Морфометрия и эволюция: проблема пересечения крутых фенотипических ландшафтов прямыми путями


https://doi.org/10.18699/VJ17.264

Полный текст:


Аннотация

Для изучения основополагающих факторов фенотипической эволюции и для реконструкции эволюционной истории фенотипов широко применяются методы геометрической морфометрии. Однако фенотипические ландшафты могут быть нелинейными настолько, что аналитические решения, полученные путем сравнения фенотипов в морфопространстве, будут иметь сложные или даже противоречивые взаимоотношения в пространстве факторов, определяющих эти фенотипы. Иллюстрацией того, как на основании математических свойств геометрических морфопространств получаются совершенно невероятные с точки зрения биологии результаты, служит реконструкция родословной морфологии рогов копытных млекопитающих. На модели Раупа, описывающей спиральность раковин, показано, что результаты реконструкции предковых форм в параметрических пространствах (таких как уровни экспрессии генов или частоты встречаемости аллелей) могут войти в противоречие с результатами реконструкции в пространствах форм (таких как фенотипические морфопространства). Приведенные примеры в полной мере относятся к морфометрическим исследованиям ныне существующих живых объектов, а значит, формулируя выводы о генетических, онтогенетических или экологических процессах на основании данных морфометрического анализа, надо соблюдать определенную осторожность. Плотное покрытие пространства форм и использование полностью многомерных и, возможно, нелинейных методов могут помочь предотвратить потенциальные проблемы.


Об авторе

П. Д. Полли
Индианский университет
Соединённые Штаты Америки

Отделения наук о Земле и атмосфере, биологии и антропологии

Блумингтон, Индиана, 47405 США



Список литературы

1. Adams D.C., Rohlf F.J., Slice D.E. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian J. Zool. 2004;71:5-16. DOI 10.1080/11250000409356545.

2. Adams D.C., Rohlf F.J., Slice D.E. A field comes of age: geometric morphometrics in the 21st century. Hystrix. 2013;24:7-14. DOI 10.4404/hystrix-24.1-6283.

3. Arnold S.J., Pfrender M.E., Jones A.G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica. 2001;112-113:9-32. DOI 10.1023/A:1013373907708.

4. Belyaev D.K. Destabilizing selection as a factor in domestication. J. Heredity. 1979;70:301-308.

5. Belyaev D.K., Plyusnina I.Z., Trut L.N. Domestication in the Silver fox (Vulpes fulvus DESM): changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 1984;13:359-370. DOI 10.1016/0168-1591(85)90015-2.

6. Bookstein F.L. Morphometric Tools for Landmark Data. Cambridge, UK: Cambr. Univ. Press, 1991.

7. Bookstein F.L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1997;1:225-243.

8. Bookstein F.L. Random walk as a null model for high-dimensional morphometrics of fossil series: geometrical considerations. Paleobiology. 2012;39:52-74. DOI 10.1016/S1361-8415(97)85012-8.

9. Bookstein F.L. The inappropriate symmetries of multivariate statistical analysis in geometric morphometrics. Evol. Biol. 2016;43:277-313. DOI 10.1007/s11692-016-9382-7.

10. Clavel J., Escarguel G., Merceron G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Meth. Ecol. Evol. 2015;6:1311-1319. DOI 10.1111/2041-210X.12420.

11. Dryden I.L., Mardia K.V. Statistical Shape Analysis. Chichester, UK: John Wiley & Sons, 1998.

12. Felsenstein J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 1973;25:471-492.

13. Felsenstein J. Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 1988;19:445-471. DOI 10.1146/annurev.es.19.110188.002305.

14. Finarelli J.A., Flynn J.J. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst. Biol. 2006;55:301-313. DOI 10.1080/10635150500541698.

15. Goolsby E.W. Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits. Syst. Biol. 2015;64: 568-578. DOI 10.1093/sysbio/syv012.

16. Gómez-Robles A., Bermúdez de Castro J.M., Arsuaga J.-L., Carbonell E., Polly P.D. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. Proc. Natl. Acad. Sci. USA. 2013;110:18196-18201. DOI 10.1073/pnas.1302653110.

17. Gunz P., Mitteroecker P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix. 2013;24:103-109. DOI 10.4404/hystrix-24.1-6292.

18. Gunz P., Mitteroecker P., Bookstein F.L. Semilandmarks in three dimensions. Modern Morphometrics in Physical Anthropology. Ed. D.E. Slice. New York, NY: Kluwer, 2005;73-93.

19. Hansen T.F. The evolution of genetic architecture. Ann. Rev. Ecol. Evol. Syst. 2006;37:123- 157. DOI 10.1146/annurev.ecolsys.37.091305.110224.

20. Hansen T.F. Macroevolutionary quantitative genetics? A comment on Polly (2008). Evol. Biol. 2008;35:182-185. DOI 10.1007/s11692-008-9027-6.

21. Harjunmaa E., Seidel K., Häkkinen T., Renvoisé E., Corfe I.J., Kallonen A., Zhang Z.Q., Evans A.R., Mikkola M.L., Salazar-Ciudad I., Klein O.D., Jernvall J. Replaying evolutionary transitions from the dental fossil record. Nature. 2014;512:44-48. DOI 10.1038/nature13613.

22. Head J.J., Polly P.D. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature. 2015;520:86-89. DOI 10.1038/nature14042.

23. Jernvall J. Mammalian molar cusp patterns. Acta Zool. Fenn. 1995; 198:1-61.

24. Jernvall J., Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Develop. 2000;92:19-29. DOI 10.1016/S0925-4773(99)00322-6.

25. Jernvall J., Keränen S.V., Thesleff I. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc. Natl. Acad. Sci. USA. 2000;97:14444-14448. DOI 10.1073/pnas.97.26.14444.

26. Kangas A.T., Evans A.R., Thesleff I., Jernvall J. Nonindependence of mammalian dental characters. Nature. 2004;432:211-214. DOI 10.1038/nature02927.

27. Klingenberg C.P. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene. 2002;287: 3-10. DOI 10.1016/S0378-1119(01)00867-8.

28. Klingenberg C.P. Novelty and “homology-free” morphometrics: What’s in a name? Evol. Biol. 2008;35:186-190. DOI 10.1007/s11692-008-9029-4.

29. Klingenberg C.P. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016;226:113-137. DOI 10.1007/s00427-016-0539-2.

30. Klingenberg C.P., Debat V., Roff D.A. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure. Evolution. 2010;64:2935-2951. DOI 10.1111/j.1558-5646.2010.01030.x.

31. Klingenberg C.P., Gidaszewski N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 2010;59:245-261. DOI 10.1093/sysbio/syp106.

32. Klingenberg C.P., Leamy L.J. Quantitative genetics of geometric shape in the mouse mandible. Evolution. 2001;55:2342-2352. DOI 10.1554/0014-3820(2001)055[2342:QGOGSI]2.0.CO;2.

33. Klingenberg C.P., Leamy L.J., Routman E.J., Cheverud J.M. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics. 2001;157: 785-802.

34. Klingenberg C.P., Monteiro L.R. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst. Biol. 2005;54:678-688. DOI 10.1080/10635150590947258.

35. Lande R. Natural selection and random genetic drift in phenotypic evolution. Evolution. 1976;30:314-334. DOI 10.2307/2407703.

36. MacLeod N. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiol. 1999;25:107-138. DOI 10.1666/0094-8373(1999)025<0107:GAETEM>2.3.CO;2.

37. Marin F., Le Roy N., Marie B. The formation and mineralization of mollusk shell. Front. Biosci. 2012;4:1099-1125.

38. Martínez-Abadías N., Esparza M., Sjøvold T., González-José R., Santos M., Hernández M., Klingenberg C.P. Pervasive genetic integration directs the evolution of human skull shape. Evolution. 2011;66:1010-1023. DOI 10.1111/j.1558-5646.2011.01496.x.

39. Martins E.P., Hansen T.F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 1997;149:646-667. DOI 10.1086/286013.

40. Mitteroecker P., Hutteger S.M. The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol. Theory. 2009;4:54-67. DOI 10.1162/biot.2009.4.1.54.

41. Mitteroecker P., Gunz P., Bookstein F.L. Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evol. Develop. 2005;7:244-258. DOI 10.1111/j.1525-142X.2005.05027.x.

42. Mounier A., Lahr M.M. Virtual ancestor reconstruction: revealing the ancestor of modern humans and Neandertals. J. Hum. Evol. 2016; 91:57-72. DOI 10.1016/j.jhevol.2015.11.002.

43. Myers E.M., Janzen F.J., Adams D.C., Tucker J.K. Quantitative genetics of plastron shape in slider turtles (Trachemys scripta). Evolution. 2006;60:563-572. DOI 10.1554/05-633.1.

44. Nijhout H.F. The nature of robustness in development. BioEssays. 2002;24:553-563. DOI 10.1002/bies.10093.

45. Nijhout H.F. Complex traits: genetics, development, and evolution. Integrating Evolution and Development: From Theory to Practice. Eds. R. Sansom, R.N. Brandon. Cambridge, MA: MIT Press, 2007; 93-112.

46. Nijhout H.F. Developmental phenotypic landscapes. Evol. Biol. 2008; 35:100-103. DOI 10.1007/s11692-008-9024-9.

47. Polly P.D. Paleontology and the comparative method: Ancestral node reconstructions versus observed node values. Am. Nat. 2001;157:596-609. DOI 10.1086/320622.

48. Polly P.D. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeont. Electr. 2004; 7.2.7A:1-28.

49. Polly P.D. Developmental dynamics and G-matrices: Can morphometric spaces be used to model evolution and development? Evol. Biol. 2008;35:83-96. DOI 10.1007/s11692-008-9020-0.

50. Polly P.D. Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition. Odontol. 2015;103:117-125. DOI 10.1007/s10266-015-0208-3.

51. Polly P.D., Motz G.J. Patterns and processes in morphospace: geometric morphometrics of three-dimensional objects. Paleont. Soc. Pap. 2017;22:71-99.

52. Polly P.D., Lawing A.M., Fabre A.-C., Goswami A. Phylogenetic principal components analysis and geometric morphometrics. Hystrix. 2013;24:1-9. DOI 10.4404/hystrix-24.1-6383.

53. Polly P.D., Stayton C.T., Dumont E.R., Pierce S.E., Rayfield E.J., Angielczyk K.D. Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. J. Vert. Paleont. 2016;36(4):p.e1111225. DOI 10.1080/02724634.2016.1111225.

54. Raup D.M. The geometry of coiling in gastropods. Proc. Natl. Acad. Sci. USA. 1961;47:602-609.

55. Raup D.M. Geometric analysis of shell coiling: general problems. J. Paleont. 1966;40:1178-1190.

56. Rice S.H. The bio-geometry of mollusc shells. Paleobiol. 1998;24:133-149. DOI 10.1017/S0094837300020017.

57. Rice S.H. A general population genetic theory for the evolution of developmental interactions. Proc. Natl. Acad. Sci. USA. 2002;99:15518- 15523. DOI 10.1073/pnas.202620999.

58. Rice S.H. Evolutionary Theory: Mathematical and Conceptual Foundations. Sunderland, MA: Sinauer Associates, Inc, 2004.

59. Rohlf F.J. Relative warp analysis and an example of its application to mosquito wings. Contributions to Morphometrics. Eds. L.F. Marcus, E. Bello, A. Garcia-Valdecasas. Madrid, Spain: Museum Nacional de Ciencias Naturales, 1993;131-159.

60. Rohlf F.J. Geometric morphometrics and phylogeny. Morphology, Shape, and Phylogenetics. Eds. N. Macleod, P. Forey. Abingdon, United Kingdom: Taylor and Francis, 2002;175-193.

61. Rohlf F.J., Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 1990;39:40-59. DOI 10.2307/2992207.

62. Salazar-Ciudad I., Jernvall J. How different types of pattern formation mechanisms affect the evolution of form and development. Evol. Develop. 2004;6:6-16. DOI 10.1111/j.1525-142X.2004.04002.x.

63. Sánchez-Villagra M.R., Geiger M., Schneider R.A. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. R. Soc. Open Sci. 2016;3:160107. DOI 10.1098/rsos.160107.

64. Simpson G.G. Tempo and Mode in Evolution. New York, NY: Columbia Univ. Press, 1944.

65. Slater G.J., Harmon L.J. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Meth. Ecol. Evol. 2013;4:699-702. DOI 10.1111/2041-210X.12091.

66. Slater G.J., Harmon L.J., Alfaro M.E. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution. 2012; 66:3931-3944. DOI 10.1111/j.1558-5646.2012.01723.x.

67. Trut L.N., Herbeck Y.E., Kharlamova A.V., Gulevich R.G., Kukekova A.V. Fox domestication: molecular mechanisms involved in selection for behavior. Russ. J. Genet. Appl. Res. 2013;3:419-425. DOI 10.1134/S2079059713060117.

68. Uyeda J.C., Caetano D.S., Pennell M.W. Comparative analysis of principal components can be misleading. Syst. Biol. 2015;64:677-689. DOI 10.1093/sysbio/syv019.

69. Vavilov N.I. The law of homologous series in variation. J. Genet. 1922; 12:47-89. DOI 10.1007/BF02983073.

70. Viðarsdóttir U.S., O’Higgins P., Stringer C. A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton. J. Anat. 2002;201:211- 229. DOI 10.1046/j.1469-7580.2002.00092.x.

71. Wilkins A.S., Wrangham R.W., Fitch W.T. The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197:795-808. DOI 10.1534/genetics.114.165423.

72. Wolf J.B. The geometry of phenotypic evolution in developmental hyperspace. Proc. Natl. Acad. Sci. USA. 2002;99:15849-15851. DOI 10.1073/pnas.012686699.

73. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. 6th Int. Congr. Genet. 1932;356-366.

74. Zelditch M.L., Fink W.L. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiol. 1996;22:241-254. DOI 10.1017/S0094837300016195.

75. Zelditch M.L., Bookstein F.L., Lundrigan B.L. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution. 1992;46:1164-1180. DOI 10.2307/2409763.

76. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric Morphometrics for Biologists: a Primer. Amsterdam, The Netherlands: Elsevier Acad. Press, 2004.


Дополнительные файлы

Просмотров: 97

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)