Morphometrics and evolution: the challenge of crossing rugged phenotypic landscapes with straight paths
https://doi.org/10.18699/VJ17.264
Abstract
Geometric morphometrics is widely used to study underlying causal factors in phenotypic evolution and to reconstruct evolutionary history of phenotypes. However, non-linearities in the phenotypic landscape may exist such that analytical solutions derived from comparison of phenotypes in morphospace may have complex or contradictory relationships in the space of the underlying factors. Ancestral reconstruction of horn morphology based on two mammalian ungulates illustrates how biologically improbable results can arise from the mathematical properties of geometric morphometric morphospaces. Raup’s shell coiling equations are used to illustrate the potential for contradictory conclusions to be drawn from ancestral reconstructions in parameter spaces (such as measurements of levels of gene expression or allele frequencies) versus shape spaces (such as morphospaces based on phenotypic analysis). These examples are generalizable to many real morphometric studies, suggesting that care should be taken when drawing conclusions about genetic, developmental, or environmental processes based on morphometric analyses. Dense sampling of shape space and the use of fully multivariate and, perhaps, nonlinear methods can help forestall potential problems.
About the Author
P. D. PollyUnited States
Departments of Earth and Atmospheric Sciences, Biology, and Anthropology
Bloomington, IN 47405 USA
References
1. Adams D.C., Rohlf F.J., Slice D.E. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian J. Zool. 2004;71:5-16. DOI 10.1080/11250000409356545.
2. Adams D.C., Rohlf F.J., Slice D.E. A field comes of age: geometric morphometrics in the 21st century. Hystrix. 2013;24:7-14. DOI 10.4404/hystrix-24.1-6283.
3. Arnold S.J., Pfrender M.E., Jones A.G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica. 2001;112-113:9-32. DOI 10.1023/A:1013373907708.
4. Belyaev D.K. Destabilizing selection as a factor in domestication. J. Heredity. 1979;70:301-308.
5. Belyaev D.K., Plyusnina I.Z., Trut L.N. Domestication in the Silver fox (Vulpes fulvus DESM): changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 1984;13:359-370. DOI 10.1016/0168-1591(85)90015-2.
6. Bookstein F.L. Morphometric Tools for Landmark Data. Cambridge, UK: Cambr. Univ. Press, 1991.
7. Bookstein F.L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1997;1:225-243.
8. Bookstein F.L. Random walk as a null model for high-dimensional morphometrics of fossil series: geometrical considerations. Paleobiology. 2012;39:52-74. DOI 10.1016/S1361-8415(97)85012-8.
9. Bookstein F.L. The inappropriate symmetries of multivariate statistical analysis in geometric morphometrics. Evol. Biol. 2016;43:277-313. DOI 10.1007/s11692-016-9382-7.
10. Clavel J., Escarguel G., Merceron G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Meth. Ecol. Evol. 2015;6:1311-1319. DOI 10.1111/2041-210X.12420.
11. Dryden I.L., Mardia K.V. Statistical Shape Analysis. Chichester, UK: John Wiley & Sons, 1998.
12. Felsenstein J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 1973;25:471-492.
13. Felsenstein J. Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 1988;19:445-471. DOI 10.1146/annurev.es.19.110188.002305.
14. Finarelli J.A., Flynn J.J. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst. Biol. 2006;55:301-313. DOI 10.1080/10635150500541698.
15. Goolsby E.W. Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits. Syst. Biol. 2015;64: 568-578. DOI 10.1093/sysbio/syv012.
16. Gómez-Robles A., Bermúdez de Castro J.M., Arsuaga J.-L., Carbonell E., Polly P.D. No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. Proc. Natl. Acad. Sci. USA. 2013;110:18196-18201. DOI 10.1073/pnas.1302653110.
17. Gunz P., Mitteroecker P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix. 2013;24:103-109. DOI 10.4404/hystrix-24.1-6292.
18. Gunz P., Mitteroecker P., Bookstein F.L. Semilandmarks in three dimensions. Modern Morphometrics in Physical Anthropology. Ed. D.E. Slice. New York, NY: Kluwer, 2005;73-93.
19. Hansen T.F. The evolution of genetic architecture. Ann. Rev. Ecol. Evol. Syst. 2006;37:123- 157. DOI 10.1146/annurev.ecolsys.37.091305.110224.
20. Hansen T.F. Macroevolutionary quantitative genetics? A comment on Polly (2008). Evol. Biol. 2008;35:182-185. DOI 10.1007/s11692-008-9027-6.
21. Harjunmaa E., Seidel K., Häkkinen T., Renvoisé E., Corfe I.J., Kallonen A., Zhang Z.Q., Evans A.R., Mikkola M.L., Salazar-Ciudad I., Klein O.D., Jernvall J. Replaying evolutionary transitions from the dental fossil record. Nature. 2014;512:44-48. DOI 10.1038/nature13613.
22. Head J.J., Polly P.D. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature. 2015;520:86-89. DOI 10.1038/nature14042.
23. Jernvall J. Mammalian molar cusp patterns. Acta Zool. Fenn. 1995; 198:1-61.
24. Jernvall J., Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Develop. 2000;92:19-29. DOI 10.1016/S0925-4773(99)00322-6.
25. Jernvall J., Keränen S.V., Thesleff I. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc. Natl. Acad. Sci. USA. 2000;97:14444-14448. DOI 10.1073/pnas.97.26.14444.
26. Kangas A.T., Evans A.R., Thesleff I., Jernvall J. Nonindependence of mammalian dental characters. Nature. 2004;432:211-214. DOI 10.1038/nature02927.
27. Klingenberg C.P. Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene. 2002;287: 3-10. DOI 10.1016/S0378-1119(01)00867-8.
28. Klingenberg C.P. Novelty and “homology-free” morphometrics: What’s in a name? Evol. Biol. 2008;35:186-190. DOI 10.1007/s11692-008-9029-4.
29. Klingenberg C.P. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes Evol. 2016;226:113-137. DOI 10.1007/s00427-016-0539-2.
30. Klingenberg C.P., Debat V., Roff D.A. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure. Evolution. 2010;64:2935-2951. DOI 10.1111/j.1558-5646.2010.01030.x.
31. Klingenberg C.P., Gidaszewski N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 2010;59:245-261. DOI 10.1093/sysbio/syp106.
32. Klingenberg C.P., Leamy L.J. Quantitative genetics of geometric shape in the mouse mandible. Evolution. 2001;55:2342-2352. DOI 10.1554/0014-3820(2001)055[2342:QGOGSI]2.0.CO;2.
33. Klingenberg C.P., Leamy L.J., Routman E.J., Cheverud J.M. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics. 2001;157: 785-802.
34. Klingenberg C.P., Monteiro L.R. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst. Biol. 2005;54:678-688. DOI 10.1080/10635150590947258.
35. Lande R. Natural selection and random genetic drift in phenotypic evolution. Evolution. 1976;30:314-334. DOI 10.2307/2407703.
36. MacLeod N. Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiol. 1999;25:107-138. DOI 10.1666/0094-8373(1999)025<0107:GAETEM>2.3.CO;2.
37. Marin F., Le Roy N., Marie B. The formation and mineralization of mollusk shell. Front. Biosci. 2012;4:1099-1125.
38. Martínez-Abadías N., Esparza M., Sjøvold T., González-José R., Santos M., Hernández M., Klingenberg C.P. Pervasive genetic integration directs the evolution of human skull shape. Evolution. 2011;66:1010-1023. DOI 10.1111/j.1558-5646.2011.01496.x.
39. Martins E.P., Hansen T.F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 1997;149:646-667. DOI 10.1086/286013.
40. Mitteroecker P., Hutteger S.M. The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol. Theory. 2009;4:54-67. DOI 10.1162/biot.2009.4.1.54.
41. Mitteroecker P., Gunz P., Bookstein F.L. Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evol. Develop. 2005;7:244-258. DOI 10.1111/j.1525-142X.2005.05027.x.
42. Mounier A., Lahr M.M. Virtual ancestor reconstruction: revealing the ancestor of modern humans and Neandertals. J. Hum. Evol. 2016; 91:57-72. DOI 10.1016/j.jhevol.2015.11.002.
43. Myers E.M., Janzen F.J., Adams D.C., Tucker J.K. Quantitative genetics of plastron shape in slider turtles (Trachemys scripta). Evolution. 2006;60:563-572. DOI 10.1554/05-633.1.
44. Nijhout H.F. The nature of robustness in development. BioEssays. 2002;24:553-563. DOI 10.1002/bies.10093.
45. Nijhout H.F. Complex traits: genetics, development, and evolution. Integrating Evolution and Development: From Theory to Practice. Eds. R. Sansom, R.N. Brandon. Cambridge, MA: MIT Press, 2007; 93-112.
46. Nijhout H.F. Developmental phenotypic landscapes. Evol. Biol. 2008; 35:100-103. DOI 10.1007/s11692-008-9024-9.
47. Polly P.D. Paleontology and the comparative method: Ancestral node reconstructions versus observed node values. Am. Nat. 2001;157:596-609. DOI 10.1086/320622.
48. Polly P.D. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. Palaeont. Electr. 2004; 7.2.7A:1-28.
49. Polly P.D. Developmental dynamics and G-matrices: Can morphometric spaces be used to model evolution and development? Evol. Biol. 2008;35:83-96. DOI 10.1007/s11692-008-9020-0.
50. Polly P.D. Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition. Odontol. 2015;103:117-125. DOI 10.1007/s10266-015-0208-3.
51. Polly P.D., Motz G.J. Patterns and processes in morphospace: geometric morphometrics of three-dimensional objects. Paleont. Soc. Pap. 2017;22:71-99.
52. Polly P.D., Lawing A.M., Fabre A.-C., Goswami A. Phylogenetic principal components analysis and geometric morphometrics. Hystrix. 2013;24:1-9. DOI 10.4404/hystrix-24.1-6383.
53. Polly P.D., Stayton C.T., Dumont E.R., Pierce S.E., Rayfield E.J., Angielczyk K.D. Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. J. Vert. Paleont. 2016;36(4):p.e1111225. DOI 10.1080/02724634.2016.1111225.
54. Raup D.M. The geometry of coiling in gastropods. Proc. Natl. Acad. Sci. USA. 1961;47:602-609.
55. Raup D.M. Geometric analysis of shell coiling: general problems. J. Paleont. 1966;40:1178-1190.
56. Rice S.H. The bio-geometry of mollusc shells. Paleobiol. 1998;24:133-149. DOI 10.1017/S0094837300020017.
57. Rice S.H. A general population genetic theory for the evolution of developmental interactions. Proc. Natl. Acad. Sci. USA. 2002;99:15518- 15523. DOI 10.1073/pnas.202620999.
58. Rice S.H. Evolutionary Theory: Mathematical and Conceptual Foundations. Sunderland, MA: Sinauer Associates, Inc, 2004.
59. Rohlf F.J. Relative warp analysis and an example of its application to mosquito wings. Contributions to Morphometrics. Eds. L.F. Marcus, E. Bello, A. Garcia-Valdecasas. Madrid, Spain: Museum Nacional de Ciencias Naturales, 1993;131-159.
60. Rohlf F.J. Geometric morphometrics and phylogeny. Morphology, Shape, and Phylogenetics. Eds. N. Macleod, P. Forey. Abingdon, United Kingdom: Taylor and Francis, 2002;175-193.
61. Rohlf F.J., Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 1990;39:40-59. DOI 10.2307/2992207.
62. Salazar-Ciudad I., Jernvall J. How different types of pattern formation mechanisms affect the evolution of form and development. Evol. Develop. 2004;6:6-16. DOI 10.1111/j.1525-142X.2004.04002.x.
63. Sánchez-Villagra M.R., Geiger M., Schneider R.A. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. R. Soc. Open Sci. 2016;3:160107. DOI 10.1098/rsos.160107.
64. Simpson G.G. Tempo and Mode in Evolution. New York, NY: Columbia Univ. Press, 1944.
65. Slater G.J., Harmon L.J. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Meth. Ecol. Evol. 2013;4:699-702. DOI 10.1111/2041-210X.12091.
66. Slater G.J., Harmon L.J., Alfaro M.E. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution. 2012; 66:3931-3944. DOI 10.1111/j.1558-5646.2012.01723.x.
67. Trut L.N., Herbeck Y.E., Kharlamova A.V., Gulevich R.G., Kukekova A.V. Fox domestication: molecular mechanisms involved in selection for behavior. Russ. J. Genet. Appl. Res. 2013;3:419-425. DOI 10.1134/S2079059713060117.
68. Uyeda J.C., Caetano D.S., Pennell M.W. Comparative analysis of principal components can be misleading. Syst. Biol. 2015;64:677-689. DOI 10.1093/sysbio/syv019.
69. Vavilov N.I. The law of homologous series in variation. J. Genet. 1922; 12:47-89. DOI 10.1007/BF02983073.
70. Viðarsdóttir U.S., O’Higgins P., Stringer C. A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton. J. Anat. 2002;201:211- 229. DOI 10.1046/j.1469-7580.2002.00092.x.
71. Wilkins A.S., Wrangham R.W., Fitch W.T. The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197:795-808. DOI 10.1534/genetics.114.165423.
72. Wolf J.B. The geometry of phenotypic evolution in developmental hyperspace. Proc. Natl. Acad. Sci. USA. 2002;99:15849-15851. DOI 10.1073/pnas.012686699.
73. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. 6th Int. Congr. Genet. 1932;356-366.
74. Zelditch M.L., Fink W.L. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiol. 1996;22:241-254. DOI 10.1017/S0094837300016195.
75. Zelditch M.L., Bookstein F.L., Lundrigan B.L. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution. 1992;46:1164-1180. DOI 10.2307/2409763.
76. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric Morphometrics for Biologists: a Primer. Amsterdam, The Netherlands: Elsevier Acad. Press, 2004.