THE DIVERSITY OF LIFE CYCLES AND THEIR ROLE IN THE EVOLUTION OF BASIC CHROMOSOME NUMBERS IN VARIOUS ORGANISMS
Abstract
Basic chromosome numbers are compared among species of four gymnosperm divisions, three Anthophyta families, and three Mammalia subclasses, with different life cycle types. Gymnosperm and angiosperm species characterized by alternation of haploid and diploid phases, sporic meiotic reduction, hermaphroditism, and sporophyte predominance have small basic chromosome numbers (BCNs): x = 7 to 14, and most of their species are polyploids. Species of various mammal subclasses, with sporophyte predominance gametic meiotic reduction, dioecious, and characterized by a chromosomal sex-determination system broadly vary in BCN. Monotremata species (oviparous) have small BCNs and ploidy levels 10x. The BCN variability among marsupials is x = 5 to 16, and in Euarchontoglires (placentals) x = 3 to 51. No polyploids have been found among marsupials or placentals.
Data on chromosome banding and various kinds of fluorescence hybridization of chromosome-specific probes indicate that the BCN evolution in angiosperms was accompanied by repeated crosses and polyploidization of species with few chromosomes followed by dysploidization by means of conjugation of nonhomologous chromosomes and reciprocal translocations. It is believed that the BCN of the placental ancestor was x = 40–50; of the marsupial ancestor, 16–20; and of oviparous mammals, 5–6. The significant difference among BCNs of the ancestors of the three mammal subclasses, which diverged tens of millions of years ago, suggests that the evolution of BCNS in the ancestors of marsupials and placentals involved polyploidy followed by dysploidy.
The species analyzed demonstrate a correlation between life cycle type and BCN.
The results indicate that the genetic difference in sex determination systems were the main cause of BCN variation in the species analyzed, differing in life cycle type. The lengths of the haploid and diploid phases are of minor significance.
About the Author
A. I. ShchapovaRussian Federation
References
1. Авдулов Н.П. Кариосистематическое исследование семейства злаков // Тр. по прикл. ботан., генет. и селекции. Приложение 44 Л.: ВАСХНИЛ. Ин-т растениеводства, 1931. 428 с.
2. Богданов Ю.Ф. Изменчивость и эволюция мейоза // Генетика. 2003. Т. 39. № 4. С. 453–473.
3. Болховских З.В., Гриф В.Г., Захарьева О.И., Матвеева Т.С. Хромосомные числа цветковых растений / Под ред. А.Н. Федорова. Л.: Наука, 1969. 920 с.
4. Голиченков В.А., Иванов Е.А., Никерясова Е.Н. Эмбриология. М.: Издат. центр «Академия», 2004. 224 с.
5. Курсанов Л.И., Комарницкий Н.А., Раздорский В.Ф., Уранов А.А. Анатомия и морфология растений. Т. 1. М.: Просвещение, 1966. 423 с.
6. Львова И.Н. Пол у растений. М.: Изд-во МГУ, 1963. 56 с.
7. Муратова Е.Н., Круклис М.В. Хромосомные числа голосеменных растений. Новосибирск: Наука, 1988. 120 с.
8. Поддубная-Арнольди В.А. Общая эмбриология покрытосеменных растений. М.: Наука, 1964. 482 с.
9. Райков И.Б. Ядро простейших. Морфология и эволюция. Л.: Наука, 1978. 327 с.
10. Райков И.Б. Новые данные о мейозе у простейших // Генетика, биохимия и цитология мейоза. М.: Наука, 1982. С. 75–80.
11. Рейвн П., Эверт Р., Айкхорн С. Современная ботаника. Т. 1. М.: Мир, 1990а. 347 с.
12. Рейвн П., Эверт Р., Айкхорн С. Современная ботаника. Т. 2. М.: Мир, 1990б. 344 с.
13. Соколов В.Е. Систематика млекопитающих. М.: Высш. шк., 1973. 432 с.
14. Цвелев Н.Н. Злаки СССР. Л.: Наука. Ленингр. отд-ние, 1976. 788 с.
15. Щапова А.И. Эволюция базового числа хромосом в семействе злаковых (Poaceae Barnh) // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 769–780.
16. Atlas of Mammalian Chromosomes / Eds. S.J. O’Brien, J.C. Menninger, W.G. Nash. Willey and Sons, 2006. 714 p.
17. Beklemisheva V.R., Romanenko S.A., Biltueva L.S. et al. Reconstruction of karyotype evolution in core Glires. I. The genome homology revealed by comparative chromosome painting // Chromosome Res. 2011. V. 19. P. 549–565.
18. Bennetzen J.L., Freeling M. The unifi ed glass genome: synergy in synteny // Genome Res. 1997. V. 7. P. 301–306.
19. De Leo A.A., Guedelha N., Toder R. et al. Comparative chromosome painting between marsupial order: relationships with a 2n = 14 ancestral marsupial karyotype // Chromosome Res. 1999. V. 7. P. 509–517.
20. Gaut B.S., Doebley J.F. DNA sequence evidence for the segmental allotetraploid origin of maize // Proc. Natl Acad. Sci. USA. 1997. V. 94. P. 6808–6814.
21. Gomez M.I., Islam-Faridi M.N., Zwick M.S. et al. Tetraploid nature of Sorghum bicolor (L.) Moench // J. Hered. 1998. V. 89. P. 188–190.
22. Graphodatsky A.S., Yang F., O’Brien P.C.M. et al. A comparative chromosome map of the Arctic fox, red fox and dog defi ned by chromosome painting and high resolution G-banding // Chromosome Res. 2000a. V. 8. P. 253–263.
23. Graphodatsky A.S., Yang F., Serdukova N. et al. Dog chromosome-specifi c paints reveal evolutionary inter-and intrachromosomal rearrangements in the American mink and human // Cytogenet. Cell Genet. 2000b. V. 90. P. 275–278.
24. Grutzner F., Rens W., Tsend-Ayush F. et al. In the platypus a meiotic chain of ten chromosomes shares genes with the bird Z and mammal X chromosomes // Nature. 2004. V. 432. P. 913–917.
25. Guerra M. Chromosome numbers in plant cytotaxonomy: concepts and implication // Cytogenet. Genome Res. 2008. V. 120. P. 339–350.
26. Hipp A.I. Non uniform processes of chromosome evolution in sedges (Carex: Cyperaceae) // Evolution Int. J. Org. Evol. 2007. V. 61. P. 2175–2199.
27. Kowalski S.P., Lan Tien-Hung, Feldmann K.A., Paterson A.H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization // Genetics. 1994. V. 138. P. 499–510.
28. Kulemzina A.I., Nie W., Trifonov V.A. et al. Comparative chromosome painting of four Siberian Vespertilionidae species with Aselliscus stoliczkanus and Human probes // Cytogenet Genome Res. 2011a. V. 134. P. 200–205.
29. Kulemzina A.I., Yang F., Trifonov V.A. et al. Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype // Chromosome Res. 2011b. V. 19. P. 531–539.
30. Lagercrantz U., Lydiate D.J. Comparative genome mapping in Brassica // Genetics. 1996. V. 144. P. 1903–1910.
31. Lysak M.A., Berr A., Pecinka A. et al. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 5224–5229.
32. Maguire M.P. Evolution of meiosis // J. Theor. Biol. 1992. V. 154. P. 43–55.
33. Matsubara K., Nishida-Umehara C., Kuroiwa A. et al. Identification of chromosome rearrangements between the laboratory mouse (Mus musculus ) and the Indian spiny mouse (Mus platythrix) by comparative FISH analysis // Chromosome Res. 2003. V. 11. P. 57–64.
34. Moore G., Devos K.M., Wang Z., Gale M.D. Grasses, line up and form a circle // Curr. Biol. 1995. V. 5. P. 737–739.
35. O′Brien S.J., Menninger J.C., Nash W.G. Atlas of Mammalian Chromosomes // Canada: WILEY-LISS. 2006. P. 714.
36. Rambau R.V., Robinson T.J. Chromosome painting in the African four-striped mouse Rhabdomys pumili: Detection of possible murid specifi c contiguous segment combination // Chromosome Res. 2003. V. 11. P. 91–98.
37. Rens W., O′Brien P.C.M., Yang F. et al. Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting // Chromosome Res. 1999. V. 7. P. 461–474.
38. Rens W., O′Brien P.C.M., Yang F. et al. Karyotype relationships between distantly related marsupials from South America and Australia // Chromosoma. 2001. V. 9. P. 301–308.
39. Rens W., O′Brien P.C.M., Graves J.A.M., Ferguson-Smith M.A. Localization of chromosome regions in potoroo nuclei (Potorous tridactylus Marsupialia: Potoroinae) // Chromosoma. 2003. V. 112. P. 66–76.
40. Rens W., Grutzner R., O′Brien P.C.M. et al. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution // Proc. Natl Acad. Sci. USA. 2004. V. 101. P. 16257–16261.
41. Trifonov V., Yang F., Ferguson-Smith M.A., Robinson T.J. Cross-species chromosome painting in the Perissodactyla: Delimitation of homologous regions in Burchells zebra (Equus burchelli) and the white (Ceratotherium simum) end black rhinoceros (Diceros bicornis) // Cytogenet. Genome Res. 2003. V. 1003. P. 104–110.
42. Tzvelev N.N. The system of grasses (Poaceae) and their evolution // Bot. Rev. 1989. V. 55. P. 141–204.
43. Volleth M., Bronner G., Go′’pfert M.C. et al. Karyotype comрarison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia) // Chromosome Res. 2001. V. 9. P. 25–46.
44. Volleth M., Heller K.-G., Pfeiffer R.A., Hameister H. A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and fi ve Microchiropteran families // Chromosome Res. 2002. V. 10. P. 477–497.
45. Whitkus R., Doebley J., Lee M. Comparative genome mapping of sorghum and maize // Genetics. 1992. V. 132. P. 1119–1130.
46. Wilkins A.S., Holliday R. The evolution of meiosis from mitosis // Genetics. 2009. V. 181. P. 3–12.
47. Yogeeswaran K., Frary A., York T.L. et al. Comparative genome analyses of Arabidopsis ssp.: Inferring chromosomal rearrangement events in the evolutionary history of A. thaliana // Genome Res. 2005. V. 15. P. 505–515.