Preview

Vavilov Journal of Genetics and Breeding

Advanced search

MEIOSIS: HOW TO HALVE THE CHROMOSOME NUMBER

Abstract

The notion of meiosis has been changed and refined for over a century since the discovery of this complicated way of cell division. Its success depends on precise time and space orchestration of many processes, such as chromosome replication, packaging, exchange of homologous regions, alignment in the plane of division, and disjunction. The development of molecular and immunocytochemical methods in recent decades cast light on the details of these processes and brought scientists closer to the understanding of mechanisms regulating them. This review presents the current notion of the major meiotic events by examples of yeast and mammals. Particular attention is paid to processes underlying chromosome synapsis and recombination, as well as monoorientation of sister kinetochores in the first division, the key features distinguishing meiosis from mitosis and ensuring chromosome number reduction.

About the Author

A. A. Torgasheva
Institute of Cytology and Genetics SB RАS, Novosibirsk, Russia
Russian Federation


References

1. Богданов Ю.Ф. Эволюция мейоза одноклеточных и многоклеточных эукариот. Ароморфоз на клеточном уровне // Журн. общ. биологии. 2008а. Т. 29. С. 102–107.

2. Богданов Ю.Ф. Белковые механизмы мейоза // Природа. 2008б. Т. С. 3–9.

3. Богданов Ю.Ф., Коломиец О.Л. Синаптонемный комплекс – индикатор динамики мейоза и изменчивости хромосом. М.: КМК, 2007. 358 с.

4. Baudat F., de Massy B. Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis // Chromosome Res. 2007. V. 15. P. 565–577.

5. Berchowitz L.E., Copenhaver G.P. Genetic interference: don’t stand so close to me // Curr. Genomics. 2010. V. 11. P. 91–102.

6. Burgoyne P.S., Mahadevaiah S.K., Turner J.M. The consequences of asynapsis for mammalian meiosis // Nature Rev. Genetics. 2009. V. 10. P. 207–216.

7. Chiang T., Schultz R.M., Lampson M.A. Meiotic origins of maternal age-related aneuploidy // Biol. Reprod. 2012. V. 86. P. 1–7.

8. Clift D., Marston A.L. The role of shugoshin in meiotic chromosome segregation // Cytogenet. and Genome Res. 2011. V. 133. P. 234–242.

9. Paigen K., Petkov P. Mammalian recombination hot spots: properties, control and evolution // Nature Rev. Genetics. 2010. V. 11. P. 221–233.

10. Revenkova E., Jessberger R. Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins // Chromosoma. 2006. V. 115. P. 235–240.

11. Santucci-Darmanin S., Baudat F. Meiotic Recombination in Mammals / Eds M.-H. Verlhac, A. Villeneuve. Oogenesis: John Wiley and Sons, Ltd, 2010. Р. 141–177.

12. Scherthan H. Telomere attachment and clustering during meiosis // Cell Mol. Life Sci. 2007. V. 64. P. 117–124.

13. Schoenmakers S., Baarends W. Meiotic Pairing of Homologous Chromosomes and Silencing of Heterologous Regions // Epigenetics and Human Reproduction / Eds S. Rousseaux, S. Khochbin. Berlin; Heidelberg: Springer, 2011. Р. 157–186.

14. Tanaka K., Watanabe Y. Sister Chromatid Cohesion and Centromere Organization in Meiosis // Recombination and Meiosis / Eds R. Egel, D.-H. Lankenau. Berlin; Heidelberg: Springer, 2008. P. 57–79.

15. Turner J.M. Meiotic sex chromosome inactivation // Development. 2007. V. 134. P. 1823–1831.

16. Wang Z.B., Schatten H., Sun Q.Y. Why is chromosome segregation error in oocytes increased with maternal aging? // Physiology (Bethesda). 2011. V. 26. P. 314–325.

17. Источники в интернете

18. Видеомодель гомологичной рекомбинации у прокариот: http://bioweb.wku.edu/courses/biol22000/16Recombination/RecDS.html

19. Видеомодель альтернативного разрешения Холидеевской структуры:

20. http://engels.genetics.wisc.edu/Holliday/holliday3D.html


Review

Views: 797


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)