Preview

Vavilov Journal of Genetics and Breeding

Advanced search

REALIZATION OF THE PHENOTYPIC EFFECT OF CHROMOSOMAL ABERRATIONS IN HUMANS

Abstract

Factors determining the phenotype formation in patients with abnormal karyotype (including those with Down’s syndrome) have been discussed for several decades. Earlier, we considered factors affecting phenotype formation in patients with chromosomal aberrations (Grinberg, 1978, 1982; Grinberg, Kukharenko, 1992). We believe that the general concept of the phenotypic manifestation of chromosomal disbalance must take into account the following factors:

1. The alteration in the number of chromosomes, in addition to specific effects connected with the dose of the genes located in a particular chromosome is accompanied by a nonspecific effect, which is manifested in the oppression of growth and development of the organism.

2. Birth defects observed in persons with chromosomal aberrations are persisting conditions, which are normal at earlier developmental stages. The main effects of chromosomal aberrations are hypomorphic. Nevertheless, these birth defects actually do not differ from developmental defects caused by particular genes and teratogenic environmental factors.

3. The phenotypic manifestation of chromosomal imbalance may be based on disturbances of the basic and elementary events in morphogenesis, occurring at the cell level. Such events are proliferation and migration of cells, specific reception, and induction relationships.

4. It is supposed that changes of metabolic homeostasis in cells with abnormal karyotypes favor the manifestation of the latent variability of structures that support the basic morphogenetic functions in cells. It is conceivable that chromosomal aberrations strengthen the evolutionarily conditioned variability towards the delay of maturation of cellular and tissue structures, which is the key link in the pathogenesis associated with chromosomal imbalance.

About the Authors

K. N. Grinberg
Reproductive Genetics Institute, Chicago, USA
United States


V. I. Kukharenko
Reproductive Genetics Institute, Chicago, USA
United States


References

1. Анненков Г.А. Исследование эффектов доз генов и проблема регуляции генной экспрессии в клетках с хромосомными аберрациями // Вестник АМН СССР. 1980. № 6. С. 55–58.

2. Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека. СПб.: Изд-во Н-Л, 2006. 611 c.

3. Гринберг К.Н. Цитологически проявления хромосомного дисбаланса // Прогресс в медицинской генетике. М.: Медицина, 1978. С. 151–186.

4. Гринберг К.Н . Клеточная генетика в изучении наследственных болезней // Вестник АМН СССР. 1982. № 6. С. 76–81.

5. Гринберг К.Н., Витковски Р. Клеточная генетика // Перспективы медицинской генетики. М.: Медицина, 1982. C. 66–93.

6. Гринберг К.Н., Терехов С.М. Хромосомный дисбаланс и пролиферативный потенциал клеток in vitro // Бюл. эксперим. биол. медицины. 1985. Т. 99. № 2. С. 191–193.

7. Кухаренко В.И., Хохлова Ю.В. Уровень цАМФ и цГМФ в клетках спонтанных абортусов с трисомным и триплоидным кариотипом // Вопр. мед. химии. 1989. Т. 35. № 4. С. 73–75.

8. Лазюк Г.И. Патологическая анатомия и дифференциальный диагноз хромосомных болезней, обусловленных изменениями в системе аутосом: Автореф. дис. … д-ра мед. наук. Каунас, 1974. 46 с.

9. Тамаркина А.Д., Анненков Г.А., Кулиев А.М., Гринберг К.Н. Изучение ферментов в культивируемых фибробластах человека. Сообщение IV. Активность ферментов в С-трисомных штаммах // Генетика. 1975. Т. 11. № 4. С. 142–145.

10. Тамаркина А.Д., Филиппов И.К., Анненков Г.А., Бениашвили Г.Х. Изменение соотношения мольных долей субъединиц лактатдегидрогеназы в лимфоцитах больных с синдромом Дауна // Генетика. 1978. Т. 14. № 2. С. 354–358.

11. Фрейдин М.И., Гринберг К.Н., Кауров Б.А. Движение in vitro эмбриональных фибробластов человека с нормальными и аномальными наборами хромосом // Цитология. 1988. Т. 30. № 6. С. 718–725.

12. Alsdorf R., Wyszynski D.F. Teratogenicity of sodium valproate // Expert Opin. Drug Saf. 2005. V. 4. No. 2. P. 345–353.

13. Bjorklund D.F. The role of immaturity in human development // Psychol. Bull. 1997. V. 122. No. 2. P. 153–169.

14. Blakeslee A.F. Variation in Datura due to changes in chromosome number // Am. Naturalist. 1922. V. 56. P. 16–31.

15. Carter K.C. Early conjectures that Down syndrome is caused by chromosomal nondisjunction // Bull. Hist. Med. 2002. V. 76. No. 3. C. 528–563.

16. Cheon M.S., Shim K.S., Kim S.H. et al. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV) // Amino Acids. 2003. V. 25. No. 1. C. 41–47.

17. Cure S., Boué J., Boué A. Growth characteristics of human embryonic cell lines with chromosomal anomalies // Biomedicine. 1974. V. 21. No. 5. P. 233–236.

18. Delvig A.A., Kukharenko V.I., Belkin V.M. et al. Collagen and fi bronectin synthesis by trisomic and triploid fi broblasts from human spontaneous abortuses // Mol. Gen. Genet. 1987. V. 209. No. 3. P. 592–595.

19. Deutsch S., Lyle R., Dermitzakis E.T. et al. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes // Hum. Mol. Genet. 2005. V. 14. No. 23. P. 3741–3749.

20. Dyban A.P., Baranov V.S. Cytogenetics of Mammalian Embryonic Development. Oxford: Clarendon Press, 1987. 362 p.

21. Edwards J.H., Harnden D.G., Cameron A.H. et al. A new trisomic syndrome // Lancet. 1960. V. 1. No. 7128. P. 787–790.

22. Farkas L.G., Katic M.J., Forrest C.R. Age-related changes in anthropometric measurements in the craniofacial regions and in height in Down’s syndrome // J. Craniofac. Surg. 2002. V. 13. No. 5. P. 614–622.

23. FitzPatrick D.R., Ramsay J., McGill N.I. et al. Transcriptome analysis of human autosomal trisomy // Hum. Mol. Genet. 2002. V. 11. No. 26. P. 3249–3256.

24. Fruen B.R., Lester B.R. Down’s syndrome fi broblasts exhibit enhanced inositol uptake // Biochem. J. 1990. V. 270. No. 1. P. 119–123.

25. Grinberg K., Kukharenko V. Phenotypic effects of human aneuploidy: hypothesis of nonspecifi c teratological interaction // Proc. of the 24 Annual Meeting European Society of Human Genetics. Elsinore, Denmark. 1992. P. 81.

26. Hall B. Delayed ontogenesis in human trisomy syndromes // Hereditas. 1965. V. 52. No. 3. P. 334–344.

27. Henderson D.J., Copp A.J. Role of the extracellular matrix in neural crest cell migration // J. Anat. 1997. V. 191 (Pt 4). P. 507–515.

28. Hindley D., Medakkar S. Diagnosis of Down’s syndrome in neonates // Arch. Dis. Child Fetal Neonatal Ed. 2002. V. 87. No. 3. P. F220–221.

29. Källén B., Mastroiacovo P., Robert E. Major congenital malformations in Down syndrome // Am. J. Med. Genet. 1996. V. 65. No. 2. P. 160–166.

30. Karlsson J.O., Sjöstedt A., Wahlström J. et al. Cyclic guanosine monophosphate metabolism in human amnion cellstrisomic for chromosome 21 // Biol. Neonate. 1990. V. 57. No. 6. P. 343–348.

31. Kukharenko V.I., Delvig A.A., Grinberg K.N. Disturbances in collagen synthesis in trisomic cells from spontaneously aborted embryos // Hum. Genet. 1984. V. 68. No. 3. P. 269–271.

32. Kukharenko V.I., Kuliev A.M., Grinberg K.N. et al. Cell cycles in human diploid and aneuploid strains // Humangenetik. 1974. V. 24. No. 4. P. 285–296.

33. Kukharenko V.I., Pichugina E.M., Freidin M.I. et al. Synthesis of glycosaminoglycans in fi broblasts from abortuses with trisomy, triploidy, and from children with Down’s syndrome // Hum Genet. 1991. V. 87. No. 5. P. 592–596.

34. Kuliev A.M., Grinberg K.N., Kukharenko V.I. et al. Monosomy 21 in a human spontaneous abortus. Morphogenetic disturbances and phenotype at the cellular level // Hum. Genet. 1977. V. 38. No. 2. P. 137–145.

35. Kuliev A.M., Kukharenko V.I., Grinberg K.N. et al. Investigation of a cell strain with trisomy 14 from a spontaneously aborted human fetus // Humangenetik. 1974. V. 21. No. 1. P. 1–12.

36. Kurup R.K., Kurup P.A. Hypothalamic digoxin-mediated model for trisomy 21 // Pediatr. Pathol. Mol. Med. 2003. V. 22. No. 5. P. 411–422.

37. Lejeune J., Turpin R., Gautier M. Mongolism; a chromosomal disease (trisomy) // Bull. Acad. Natl. Med. 1959. V. 143. No. 11/12. P. 256–265.

38. McCoy E.E., Enns L. Sodium transport ouabain binding, and (Na+/K+)-ATPase activity in Down’s syndrome platelets // Pediatr. Res. 1978. V. 12. No. 6. P. 685–689.

39. McSwigan J.D., Hanson D.R., Lubiniecki A. et al. Down syndrome fi broblasts are hyperresponsive to beta-adrenergic stimulation // Proc. Natl Acad. Sci. USA. 1981. V. 78. No. 12. P. 7670–7673.

40. Montagu M.F.A. Time, morphology, and neoteny in the evolution of man // Am. Anthropol. 1955. V. 57. P. 13–27.

41. Neri G., Opitz J.M. Down syndrome: comments and refl ections on the 50th anniversary of Lejeune’s discovery // Am. J. Med. Genet. 2009. V. 149. Part A. P. 2647–2654.

42. Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? // Reprod. Toxicol. 2009. V. 28. No. 1. P. 1–10.

43. Patau K., Smith D.W., Therman E. et al. Multiple congenital anomaly caused by an extra autosome // Lancet. 1960. V. 1. No. 7128. P. 790–793.

44. Patterson D. Molecular genetic analysis of Down syndrome // Hum. Genet. 2009. V. 126. P. 195–214.

45. Perris R., Perissinotto D. Role of the extracellular matrix during neural crest cell migration // Mech. Dev. 2000. V. 95. No. 1/2. P. 3–21.

46. Pont S.J., Robbins J.M., Bird T.M. et al. Congenital malformations among liveborn infants with trisomies 18 and 13 // Am. J. Med. Genet A. 2006. V. 140. No. 16. P. 1749–1756.

47. Rozovski U., Jonish-Grossman A., Bar-Shira A. et al. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype // Hum. Reprod. 2007. V. 22. No. 9. P. 2538–2545.

48. Shapiro B.L. Amplifi ed developmental instability in Down’s syndrome // Ann. Hum. Genet. 1975. V. 38. No. 4. P. 429–437.

49. Shapiro B.L. Down syndrome – a disruption of homeostasis // Am. J. Med. Genet. 1983. V. 14. No. 2. P. 241–269.

50. Shapiro B.L. The environmental basis of the Down syndrome phenotype // Dev. Med. Child Neurol. 1994. V. 36. No. 1. P. 84–90.

51. Sivakumar S., Larkins S. Accuracy of clinical diagnosis in Down’s syndrome // Arch. Dis. Child. 2004. V. 89. No. 7. P. 691.

52. Slonim D.K., Koide K., Johnson K.L. et al. Functional genomic analysis of amniotic fl uid cell-free mRNA suggests that oxidative stress is signifi cant in Down syndrome fetuses // Proc. Natl Acad. Sci. USA. 2009. V. 106. No. 23. P. 9425–9429.

53. Sproles A.C. Cyclic AMP concentration in saliva of normal children and children with Downs syndrome // J. Dent. Res. 1973. V. 52. No. 5. P. 915–917.

54. Taylor A.I. Autosomal trisomy syndromes: a detailed study of 27 cases of Edwards’ syndrome and 27 cases of Patau’s syndrome // J. Med. Genetics. 1968. V. 5. No. 3. P. 227–252.

55. Waddington C.H. Canalization of development and the inheritance of acquired characters // Nature. 1942. V. 150. P. 563–565.


Review

Views: 849


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)