USE OF ALLELE-SPECIFIC MARKERS OF THE PPD AND VRN GENES FOR PREDICTING GROWING SEASON DURATION IN BARLEY CULTIVARS
Abstract
Allelic combinations of the Vrn-H1, Vrn-H2, Vrn-H3, Ppd-H1, and Ppd-H2 genes have been investigated with allele-specific molecular markers in 91 spring barley cultivars recommended for use in Russia and Belarus. In a field experiment under conditions of North-West Russia, heading date evaluation has been performed in these cultivars.
Barley varieties having the dominant Ppd-H1 allele were shown to overrun other genotypes in the developmental rate (heading date) and to mature earlier under long-day conditions. Among studied cultivars, grown in Russia, only 9 % possessed the dominant Ppd-H1 allele. A significant association was also found between the allele combination of Vrn genes and heading date of barley cultivars. Among cultivars with identical genotypes for Ppd-H1 and Ppd-H2, those having the allelic combination Vrn-H1vrn-H2Vrn-H3 flower significantly earlier than with other haplotypes. The use of allele-specific markers of Ppd and Vrn genes makes breeding for early ripeness easier and faster.
About the Authors
M. M. ZlotinaRussian Federation
O. N. Kovaleva
Russian Federation
I. G. Loskutov
Russian Federation
E. K. Potokina
Russian Federation
References
1. Батакова О.Б. Исходный материал для селекции ярового ячменя в условиях европейского Севера РФ: Автореф. дис. … канд. с.-х. наук. СПб., 2011.
2. Глуховцев В.В. Роль сорта в проблеме повышения урожайности и качества зерна в условиях Среднего Поволжья // Резервы повышения эффективности агропромышленного производства: Матер. регион. науч.-практ. конф. Уфа, 2004. С. 122–124.
3. Гуляев Г.В. Скороспелые сорта зерновых культур – важнейший резерв в борьбе с засухой // Селекция и семеноводство. 1999. № 2/3. С. 10–17.
4. Лукьяненко П.П. Избранные труды. М.: Агропромиздат, 1990. С. 125–126.
5. Сортовые ресурсы зернофуражных культур Нечерноземной зоны России (каталог) / Под ред. Г.А. Баталовой, Н.Н. Зезина. Екатеринбург: ГНУ Уральский НИИСХ, 2010.
6. Casao M.C., Karsai I., Igartua E. et al. Adaptation of barley to mild winters: A role for PPDH2 // BMC Plant Biology. 2011. V. 11. P. 164–177.
7. Cockram J., Jones H., Leigh F.J. et al. Control of fl owering time in temperate cereals: genes, domestication, and sustainable productivity // J. Exp. Bot. 2007. V. 58. P. 1231–1244.
8. Cockram J., Norris C., O'Sullivan D.M. PCR-based markers diagnostic for spring and winter seasonal growth habit in barley // Crop. Sci. 2009. V. 49. P. 403–410.
9. Corbesier L., Vincent C., Jang S. et al. FT protein movement contributes to long-distance signaling in fl oral induction of Arabidopsis // Science. 2007. V. 316. P. 1030–1033.
10. Distelfeld A., Li C., Dubcovsky J. Regulation of fl owering in temperate cereals // Curr. Opin. Plant Biol. 2009. V. 12. P. 178–184.
11. Dubcovsky J., Chen C., Yan L. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley // Mol. Breed. 2005. V. 15. P. 395–407.
12. Faure S., Higgins J., Turner A. et al. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare) // Genetics. 2007. V. 176. P. 599–609.
13. Jaeger K.E., Wigge P.A. FT protein acts as a long-range signal in Arabidopsis // Curr. Biol. 2007. V. 17. P. 1050–1054.
14. Jones H., Leigh F.J., Mackay I. et al. Population based resequencing reveals that the fl owering time adaptation of cultivated barley originated east of the fertile crescent // Mol. Biol. Evol. 2008. V. 25. No. 10. P. 2211–2219.
15. Karsai I., Szucs P., Meszaros K. et al. The Vrn-H2 locus is a major determinant of fl owering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population // Theor. Appl. Genet. 2005. V. 110. P. 1458–1466.
16. Kikuchi R., Kawahigashi H., Ando T. et al. Molecular and functional characterization of PEBP genes in barley reveal the diversifi cation of their roles in fl owering // Plant Physiol. 2009. V. 149. P. 1341–1353.
17. Laurie D.A., Pratchett N., Bezant J.H. et al. RFLP mapping of fi ve major genes and eight quantitative trait loci in a winter/ spring barley (Hordeum vulgare L.) cross // Genome. 1995. V. 38. P. 575–585.
18. Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A. et al. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics // Proc. Natl Acad. Sci. USA. 1984. V. 81. P. 8014–8018.
19. See D., Kanazin V., Kephart K. et al. Mapping genes controlling variation in barley grain protein concentration // Crop Sci. 2002. V. 42. P. 680–685.
20. Takahashi R., Yasuda S. Genetics of earliness and growth habit in barley // Barley genetics II / Ed. R.A. Nilan. Washington State Univ. Press, Pullman, 1971. P. 388–408.
21. Trevaskis B., Bagnall D.J., Ellis M.H. et al. MADS box genes control vernalization-induced fl owering in cereals // Proc. Natl Acad. Sci. USA. 2003 V. 100. P. 13099–13104.
22. Turner A., Beales J., Faure S. et al. The pseudo response regulator Ppd-H1 provides adaptation to photoperiod in barley // Science. 2005. V. 310. P. 1031–1033.
23. Yan L., Fu D., Li C. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 19581–19586.
24. Yan L., Loukoianov A., Tranquilli G. et al. Positional cloning of the wheat vernalization gene VRN1 // Proc. Natl Acad. Sci. USA. 2003. V. 100. P. 6263–6268.
25. Zitzewitz J., Szucs P., Dubcovsky J. et al. Molecular and structural characterization of barley vernalization genes // Plant Mol. Biol. 2005. V. 59. P. 449–467.