Preview

Vavilov Journal of Genetics and Breeding

Advanced search

RECONSTRUCTION OF MECHANISMS REGULATING THE EXPRESSION OF THE ESCHERICHIA COLI YFIA GENE UNDER STRESS CONDITIONS

Abstract

The regulatory region of the Escherichia coli yfiA gene was reconstructed by using the SiteCon web resource and mathematical modeling, and its expression complexity under oxidative stress was assessed. Simulation of the response of E. coli cells transformed with pYfi-gfp plasmid to oxidative stress indicated that the maximum agreement with experimental data was achieved in a model implying a complex action, apparently mediated by several transcription factors (TFs). The regulatory region of the yfiA gene was searched for potential TF binding sites, and highly reliable recognition was predicted for TFs MarA, IscR, MetJ, PurR, and SoxS, which directly or indirectly participate in the response of the gene to oxidative stress, and for CRP, a global regulator of carbohydrate catabolism. The presence of binding sites for CRP, MarA, and SoxS in the E. coli yfiA promoter was confirmed by electrophoretic mobility shift assay with purified recombinant TFs. This fact explains the sensitivity of yfiA to mitomycin and radical-forming agents.

About the Authors

T. M. Khlebodarova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


D. Yu. Oshchepkov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


N. V. Tikunova
Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
Russian Federation


I. V. Babkin
Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
Russian Federation


A. D. Gruzdev
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. A. Likhoshvai
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


References

1. Лихошвай В.А., Степанова Т.Ю., Задорожный А.В. и др. Экспрессия гена dps Escherichia coli в присутствии токсических агентов: анализ и математическое моделирование // Информ. вестник ВОГиС. 2009. Т. 13. № 4. С. 731–740.

2. Agafonov D.E., Kolb V.A., Spirin A.S. Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage // EMBO Rep. 2001.V. 2. P. 399–402.

3. Agafonov D.E., Spirin A.S. The ribosome-associated inhibitor A reduces translation errors // Biochem. Biophys. Res. Commun. 2004. V. 320. P. 354–358.

4. Cameron A.D., Redfi eld R.J. Non-canonical CRP sites control competence regulons in Escherichia coli and many other gamma–proteobacteria // Nucl. Acids Res. 2006. V. 34. P. 6001–6014.

5. Compan I., Touati D. Anaerobic activation of arcA transcription in Escherichia coli: roles of Fnr and ArcA // Mol. Microbiol. 1994. V. 11. P. 955–964.

6. de Hoon M.J., Makita Y., Nakai K., Miyano S. Prediction of transcriptional terminators in Bacillus subtilis and related species // PLoS Comput Biol. 2005 V. 1. No. 3. P. e25.

7. De Lorenzo V., Herrero M., Giovannini F., Neilands J.B. FUR (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli // Eur. J. Biochem. 1988. V. 173. P. 537–546.

8. Demple B. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon – a review // Gene. 1996. V. 179. No. 1. P. 53–57.

9. Hudson G.S., Davidson B.E. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12 // J. Mol. Biol. 1984. V. 180. P. 1023–1051.

10. Ishizuka H., Hanamura A., Inada T., Aiba H. Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene // The EMBO J. 1994. V. 13. P. 3077–3082.

11. Khil P.P., Camerini-Otero R.D. Over 1000 genes are involved in the DNA damage response of Escherichia coli // Mol. Microbiol. 2002. V. 44. P. 89–105.

12. Khlebodarova T.M., Tikunova N.V., Kachko A.V. et al. Application of bioinformatics resources for genosensor design // J. Bioinform. Comput. Biol. 2007. V. 5. P. 507–520.

13. Maki Y., Yoshida H., Wada A. Two proteins, Yfi A and YhbH, associated with resting ribosomes in stationary phase Escherichia coli // Genes Cells. 2000. V. 5. P. 965–974.

14. Martin R.G., Gillette W.K., Rhee S., Rosner J.L. Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter // Mol. Microbiol. 1999. V. 34. P. 431–441.

15. Martin R.G., Rosner J.L. Genomics of the marA/soxS/rob regulon of Escherichia coli: identifi cation of directly activated promoters by application of molecular genetics and informatics to microarray data // Mol. Microbiol. 2002. V. 44. P. 1611–1624.

16. Mika F., Hengge R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli // Genes Dev. 2005. V. 19. No. 22. P. 2770–2781.

17. Oshchepkov D.Y., Vityaev E.E., Grigorovich D.A. et al. SITECON: a tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition // Nucl. Acids Res. 2004. V. 32. P. W208–W212.

18. Pomposiello P.J., Bennik M.H., Demple B. Genome-wide transcriptional profi ling of the Escherichia coli responses to superoxide stress and sodium salicylate // J. Bacteriol. 2001. V. 183. P. 3890–3902.

19. Rhodius V.A., West D.M., Webster C.L. et al. Transcription activation at class II CRP-dependent promoters: the role of different activating regions // Nucl. Acids Res. 1997. V. 25. P. 326–332.

20. Riley M., Abe T., Arnaud M.B. et al. Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 // Nucl. Acids Res. 2006. V. 34. No. 1. P. 1–9.

21. Salmon K., Hung S.P., Mekjian K. et al. Global gene expression profi ling in Escherichia coli K12. The effects of oxygen availability and FNR // J. Biol. Chem. 2003. V. 278. P. 29837–29855.

22. Savery N.J., Lloyd G.S., Kainz M. et al. Transcription activation at Class II CRP-dependent promoters: identifi cation of determinants in the C-terminal domain of the RNA polymerase alpha subunit // The EMBO J. 1998. V. 17. No. 12. P. 3439–3447.

23. Schembri M.A., Kjaergaard K., Klemm P. Global gene expression in Escherichia coli biofi lms // Mol. Microbiol. 2003. V. 8. P. 253–267.

24. Schwartz C.J., Giel J.L., Patschkowski T. et al. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins // Proc. Natl Acad. Sci. USA. 2001. V. 98. No. 26. P. 14895–14900.

25. Steffen P., Voss B., Rehmsmeier M. et al. RNAshapes: an integrated RNA analysis package based on abstract shapes // Bioinformatics. 2006. V. 22. No. 4. P. 500–503.

26. Takayanagi Y., Tanaka K., Takahashi H. Structure of the 5’ upstream region and the regulation of the rpoS gene of Escherichia coli // Mol. Gen. Genet. 1994. V. 243. P. 525–531.

27. Tartaglia L.A., Storz G., Ames B.N. Identifi cation and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress // J. Mol. Biol. 1989. V. 210. P. 709–719.

28. Tikunova N.V., Khlebodarova T.M., Kachko A.V. et al. A computational-experimental approach to designing a polyfunctional genosensor derived from the Escherichia coli gene yfi A promoter // Dokl. Biochem. Biophys. 2007. V. 417. No. 6. P. 357–361.

29. Ueta M., Yoshida H., Wada C. et al. Ribosome binding proteins YhbH and Yfi A have opposite functions during 100S formation in the stationary phase of Escherichia coli // Genes Cells. 2005. V. 10. No. 12. P. 1103–1112.

30. Vila-Sanjurjo A., Schuwirth B.S., Hau C.W., Cate J.H. Structural basis for the control of translation initiation during stress // Nat. Struct. Mol. Biol. 2004. V. 11. No. 11. P. 1054–1059.

31. Wilson D.N., Nierhaus K.H. The how and Y of cold shock // Nat. Struct. Mol. Biol. 2004. V. 11. No. 11. P. 1026–1028.

32. Zheng M., Doan B., Schneider T.D., Storz G. OxyR and SoxRS regulation of fur // J. Bacteriol. 1999. V. 181. No. 15. P. 4639–4643.

33. Zheng M., Wang X., Templeton L.J. et al. DNA microarraymediated transcriptional profi ling of the Escherichia coli response to hydrogen peroxide // J. Bacteriol. 2001. V. 183. No. 15. P. 4562–4570.


Review

Views: 472


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)