Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Collection of microorganisms of ICG SB RAS as a genetic resource for biotechnology

https://doi.org/10.18699/VJ17.279

Abstract

Genetic knowledge of microorganisms plays a critical role in the creation of new biotechnologies, since the effectiveness of any biotechnology is determined by the particular qualities of the structurally functional organization of molecular-genetic systems and their components used for the production of targeted products. Collections of microbial cultures play a decisive role in mobilizing biological resources and make it possible to form a solid base for genetic, molecular biological and biotechnological research. The aim of this work was to assess the key molecular-genetic and phenotypic characteristics of strains of the collection of microorganisms created in the “FRC Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences” as a genetic resource for biotechnology. Thirty strains of microorganisms of the collection were isolated by employees of the FRC ICG SB RAS from extreme natural ecosystems, the key molecular-genetic and phenotypic characteristics were described using modern methods of molecular biology and mass-spectrometry. DNA isolation and the sequencing of 16S rRNA gene sequences were performed. The strains of the collection were characterized by morphological, physiological, moleculargenetic and mass-spectrometric characteristics. The particular qualities of growing of strains on different substrates have been established, the study of cell morphology has been carried out. The physiological characteristics of the strains of the collection have been established: the attitude to oxygen, the type of nutrition, the range of temperature and pH, the attitude to NaCl and others. Different resistance of strains to antibiotics has been established. The creation of personal mass spectra of protein profiles of the studied strains of the collection was carried out. The resulting DNA sequences of the strains are deposited in the GenBank. The chemotaxonomic characteristics of strains have been determined. The biotechnological properties of the strains were assessed, the amount of metabolites (ethanol, lactic and acetic acids) in the culture liquid was determined. The value of the collection of microorganisms of the FRC ICG SB RAS as a genetic resource for biotechnology and bioengineering is determined not only by the species diversity of its strains, but also by a wide range of their area isolation and by the depth of their characterization using the widest arsenal of both classical and modern methods (including methods of genomics, proteomics, transcriptomics and bioinformatics).

About the Authors

A. V. Bryanskaya
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


Y. E. Uvarova
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


A. S. Rozanov
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


N. M. Slynko
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


V. N. Shlyakhtun
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


K. V. Starostin
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


E. A. Demidov
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


E. V. Lazareva
V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk
Russian Federation


O. P. Taran
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


S. E. Peltek
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


References

1. Armengaud J. Next-generation proteomics faces new challenges in environmental biotechnology. Curr. Opin. Biotechnol. 2016;38:174-182. DOI 10.1016/j.copbio.2016.02.025.

2. Becker J., Wittmann C. Industrial microorganisms: Corynebacterium glu tamicum. Industrial Biotechnology: Microorganisms. C. Wittmann, J.C. Liao (Eds.). Weinheim, Germany: Wiley-VCH, 2016;183- 220. DOI 10.1002/9783527807796.ch6.

3. Bryanskaya A.V., Rozanov A.S., Logacheva M.D., Kotenko A.V., Peltek S.E. Draft genome sequence of Geobacillus icigianus strain G1w1T isolated from hot springs in the Valley of Geysers, Kamchatka (Russian Federation). Genome Announc. 2014;2(5):e01098-14. DOI 10.1128/genomeA.01098-14.

4. Bryanskaya A.V., Malup T.K., Lazareva E.V., Taran O.P., Rozanov A.S., Efimov V.M., Peltek S.E. The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region (Russia). BMC Microbiology. 2016;16(1):S4. DOI 10.1186/s12866-015-0618-y.

5. Cho S., Jung M.Y., Park M.H., Kim W. Bacillus chungangensis sp. nov., a halophilic species isolated from sea sand. Int. J. Syst. Evol. Microbiol. 2010;60:1349-1352. DOI 10.1099/ijs.0.013607-0.

6. Dobretsov N.L., Lazareva E.V., Zhmodik S.M., Bryanskaya A.V., Mo-rozova V.V., Tikunova N.V., Peltek S.E., Karpov G.A., Taran O.P., Ogorodnikova O.L., Kirichenko I.S., Rozanov A.S., Babkin I.V., Shuvaeva O.V., Chebykin E.P. Geological, hydrogeochemical, and microbiological characteristics of the oil site of the Uzon caldera (Kamchatka). Russian Geology and Geophysics. 2015;56(1-2):39-63. DOI 10.15372/GiG20150103.

7. Dool D., Kratz P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A. 1963;11:463-471. DOI 10.1016/S0021-9673(01)80947-X.

8. Elleuche S., Schröder C., Sahm K., Antranikian G. Extremozymes – biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 2014;29:116-123. DOI 10.1016/j. copbio.2014.04.003.

9. Jenkins C.L., Kuhn D.A., Daly K.R. Fatty acid composition of Simonsiella strains. Arch. Microbiol. 1977;113:209-213. DOI 10.1007/ BF00492027.

10. Kevbrin V.V. Termofilnye alkalofilnye mikroorganizmy [Thermo-philic alkaliphilic microorganisms]. Trudy Instituta mikrobiologii im. S.N. Vinogradskogo [Proceedings of the Vinogradskiy Institute of Microbiology]. Moscow: Nauka Publ., 2007;374-395. (in Russian)

11. Lasch P., Beyer W., Nattermann H., Stämmler M., Siegbrecht E., Gru-now R., Naumann D. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks. Appl. Environ. Microbiol. 2009;75(22):7229-7242. DOI 10.1128/AEM.00857-09.

12. Lazareva E.V., Bryanskaya A.V., Taran O.P., Kolmogorov Yu.P., Ma-lup T.K., Peltek S.E., Zhmodik S.M. Investigation of the distribution of elements among the components of a salt lake system by the XFEA-SR method. Poverkhnost. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya = Surface: X-ray, Synchrotron and Neutron Studies. 2012;12:70-80. DOI 10.1134/S1027451012120051. (in Russian)

13. Lazareva E.V., Bryanskaya A.V., Zhmodik S.M., Kolmogorov Y.P., Pestunova O.P., Barkhutova D.D., Zolotarev K.V., Shaporenko A.D. Elements redistribution between organic and mineral parts of microbial mats: SRXFA research (Baikal Rift Zone). Nucl. Instrum. Methods Phys. Res. A. 2009;603:137-140. DOI 10.1016/j.nima.2008. 12.178.

14. Lazareva E.V., Bryanskaya A.V., Zhmodik S.M., Smirnov S.Z., Pestunova O.P., Barkhutova D.D., Polyakova E.V. Mineralization in cyano-bacterial mats of alkaline hydrotherms of the Barguzin basin of the Baikal rift zone. Doklady RAN = Proceedings of the Russian Academy of Sciences. 2010;430(5):675-680. DOI 10.1134/ S1028334X10020169. (in Russian)

15. Li L., Degardin M., Lavergne T., Malyshev D.A., Dhami K., Ordoukhanian P., Romesberg F.E. Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J. Am. Chem. Soc. 2014;136(3):826-829. DOI 10.1021/ ja408814g.

16. Logan N.A., Vos P.D. Bacillus. Bergey’s Manual of Systematics of Archaea and Bacteria. 2015. DOI 10.1002/9781118960608.gbm 00530.

17. Maniatis T., Fritsch E., Sambrook J. Metody geneticheskoy inzhenerii. Molekulyarnoe klonirovanie [Methods of Genetic Engineering. Molecular Cloning]. Moscow: Mir Publ., 1984. (in Russian)

18. Pandhal J., Noirel J. Synthetic microbial ecosystems for biotechnology. Biotechnol. Lett. 2014;36(6):1141-1151. DOI 10.1007/s10529-014-1480-y.

19. Praktikum po mikrobiologii. Pod red. A.I. Netrusova [A.I. Netrusov (Ed.) Practical course on microbiology]. Moscow: Akademiya Publ., 2005. (in Russian)

20. Priest F.G. Systematics and ecology of Bacillus. In: A. Sonenshein, J.A. Hoch, R. Losick (Eds.). Bacillus subtilis and Other Gram-Positive Bacteria. Washington, DC: ASM Press, 1993;3-16. DOI 10.1128/9781555818388.ch1.

21. Rasko D.A., Altherr M.R., Han C.S., Ravel J. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 2005;29(2):303-329. DOI 10.1016/j.femsre.2004.12.005.

22. Rozanov A.S., Ivanisenko T.V., Bryanskaya A.V., Shekhovtsov S.V., Logacheva M.D., Saik O.V., Malup T.K., Demenkov P.S., Goryachkovskaya T.N., Ivanisenko V.A., Peltek S.E. Bioinformatics analysis of the genome of Geobacillus stearothermophilus 22 Strain isolated from the Garga hot spring, Baikal Region. Russ. J. Genetics: Appl. Res. 2014;4(4):267-272. DOI 10.1134/S207905971404011X.

23. Rozanov A.S., Bryanskaya A.V., Kotenko A.V., Peltek S.E. Draft genome sequence of Thermoactinomyces sp. Gus2-1 isolated from the hot-spring Gusikha in Bargusin Valley (Baikal Rift Zone, Russia). Genomics Data. 2017;11:1-2. DOI 10.1016/j.gdata.2016.11.014.

24. Ruelle V., Moualij B.E., Zorzi W., Ledent P., Pauw E.D. Rapid identification of environmental bacterial strains by matrix-assisted laser de sorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2004;18:18:2013-2019. DOI 10.1002/ rcm.1584.

25. Saryg-ool B.Yu., Myagkaya I.N., Kirichenko I.S., Gustaytis M.A., Shuvaeva O.V., Zhmodik S.M., Lazareva E.V. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Pt. I. Geochemistry and Mineralogy. Sci. Total Environ. 2017;581-582:460-471. DOI 10.1016/ j.scitotenv.2016.12.154.

26. Scaife M.A., Nguyen G.T.D.T., Rico J., Lambert D., Helliwell K.E., Smith A.G. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 2015;82(3):532-546. DOI 10.1111/ tpj.12781.

27. Schaffer C., Franck W.L., Scheberl A., Kosma P., McDermott T.R., Messner P. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int. J. Syst. Evol. Microbiol. 2004;54:2361-2368. DOI 10.1099/ ijs.0.63227-0.

28. Slepecky R.A., Hemphill H.E. The genus Bacillus – nonmedical. Pro-karyotes. 2006;4:530-562. DOI 10.1007/0-387-30744-3_16.

29. Starostin K.V., Demidov E.A., Bryanskaya A.V., Efimov V.M., Rozanov A.S., Peltek S.E. Identification of Bacillus strains by MALDI TOF MS using geometric approach. Sci. Rep. 2015;5:16989. DOI 10.1038/srep16989.

30. Sun Z., Harris H.M.B., McCann A., Guo C., Argimón S., Zhang W., Yang X., Jeffery I.B., Cooney J.C., Kagawa T.F., Liu W., Song Y., Salvetti E., Wrobel A., Rasinkangas P., Parkhill J., Rea M.C., O’Sullivan O., Ritari J., Douillard F.P., Ross R.P., Yang R., Briner A.E., Felis G.E., Vos W.M., Barrangou R., Klaenhammer T.R., Caufield P.W., Cui Y., Zhang H., O’Toole P.W. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 2015;6:8322. DOI 10.1038/ncomms9322.

31. Suslova M.Yu. Rasprostranenie i raznoobrazie sporoobrazuyushchikh bakteriy roda Bacillus v vodnykh ekosistemakh [Distribution and diversity of spore-forming bacteria of the genus Bacillus in aquatic ecosystems]. Irkutsk: Novoe Delo Publ., 2007;14-36. (in Russian) Zammit G. A culture collection of Maltese microorganisms for application in biotechnology, biomedicine and industry. Xjenza Online = J. Malta Chamber of Sci. 2016;4:86-89. DOI 10.7423/XJENZA. 2016.1.12.


Review

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)