Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Influence of a lignification and mineralization of leaf tissues on resistance to a brown rust in common wheat plants

https://doi.org/10.18699/VJ17.286

Abstract

Aromatic substances in plant tissues can have protective effect against fungal diseases. One of the key enzymes in aromatic metabolism of plants, CAD (cinnamyl-alcohol dehydrogenase, dehydrogenase of cinnamyl alcohol; EC 1.1.1.195), at a number of species of plants exerts impact on the content of aromatic substances and on protective properties of tissues from fungal infections. When studying a collection of cultivars of bread wheat Triticum aestivum L., polymorphic on CAD, distinctions on extent of defeat are found by brown rust (with Puccinia recondita f. sp. Tritici as a causative agent). The purpose of the work was studying of features of structure and chemical composition of the tissues of a leaf promoting increased resistance. On a phytopathologic plot, against artificial infection with spores of a brown rust, two samples of spring bread wheat 3-13-15-4 and 3-4-14-3 were affected 1–5 % and 30 %, respectively. An analysis of various substances content in the leaf tissue at the contrast samples was conducted. Large plaques and spot consisting of mineral compounds were observed on the leaf surface of the more resistant plant. In ashes of leaves and ashes of a lignin differences in the maintenance of a number of mineral elements were also found. Lignin content on the dry mass of a leaf differed slightly (14.2 % vs 12.3 %), however there are differences in chemical composition. It is possible that the observed differences lead to afflict the plants with leaf rust to such different degrees. In that case these characteristics can be used for diagnostics of potential resistance of cultivars to fungal infection.

 

About the Authors

A. A. Konovalov
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


I. K. Shundrina
Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk; Novosibirsk State University, Novosibirsk
Russian Federation


E. V. Karpova
Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk; Novosibirsk State University, Novosibirsk
Russian Federation


I. V. Eltsov
Novosibirsk State University, Novosibirsk
Russian Federation


E. A. Orlova
Siberian Research Institute of Plant Industry and Breeding – Branch of the Institute of Cytology and Genetics SB RAS, Krasnoobsk, Novosibirsk region
Russian Federation


N. P. Goncharov
Institute of Cytology and Genetics SB RAS, Novosibirsk; Novosibirsk State Agrarian University, Novosibirsk
Russian Federation


References

1. Bagniewska-Zadworna A., Barakat A., Lakomy P., Smoliński D.J., Zadworny M. Lignin and lignans in plant defence: insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Sci. 2014;229:111-121. DOI 10.1016/j.plantsci.2014.08.015.

2. Barber M.S., McConnell V.S., De Caux B.S. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry. 2000;54(1):53-56. PMID: 10846747.

3. Bélanger R.R., Benhamou N., Menzies J.G. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology. 2003;93(4):402-412. DOI 10.1094/PHYTO.2003.93.4.402.

4. Belhadj A., Saigne C., Telef N., Cluzet S., Bouscaut J., Corio-Cos-tet M.F., Mérillon J.M. Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J. Agric. Food Chem. 2006;54(24):9119-9125.

5. Belyaev D.K. (Ed.) Genetika izofermentov [The Genetics of Isoenzymes]. Novosibirsk: Nauka Publ., 1977. (in Russian)

6. Belyy V.A., Alekseev I.N., Sadykov R.A. Study of the chemical structure of lignins from golden root (Rhodiola rosea L.) and crowned saw-wort (Serratula coronata L.) by 2D nuclear magnetic resonance spectroscopy. Izvestiya Komi nauchnogo tsentra UrO RAN = Proceedings of the Komi Research Center. 2012;3(11):20-26. (in Russian)

7. Benhamou N., Bélanger R.R. Induction of systemic resistance to Pythi¬um damping-off in cucumber plants by benzothiadiazole: Ultrastructure and cytochemistry of the host response. Plant J. 1998;14(1):13-21. DOI 10.1046/j.1365-313X.1998.00088.x.

8. Chesnokov Yu.V. Pathogen resistance in plants of plants (review of foreign literature). Selskokhozyaystvennaya biologiya = Agricultural Biology. 2007;1:16-35. (in Russian)

9. del Río J.C., Rencoret J., Prinsen P., Martínez Á.T., Ralph J., Gutiérrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 2012;60(23):5922-5935. DOI 10.1021/ jf301002n.

10. Fauteux F., Rémus-Borel W., Menzies J.G., Bélanger R.R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005;249(1):1-6. DOI 10.1016/j.femsle.2005.06.034.

11. Gaskell J., Marty A., Mozuch M., Kersten P.J., BonDurant S.S., Sa-bat G., Azarpira A., Ralph J., Skyba O., Mansfield S.D., Blanch-ette R.A., Cullen D. Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 2014;80(18):5828-5835. DOI 10.1128/ AEM.01604-14.

12. Goncharov N.P., Konovalov A.A., Moiseeva E.A. Influence of short-term vernalization on the expression of the Aadh1¬Spn gene and the growth habit of plants in hybrids of rye Secale cereale L. to S. montanum Guss. Sibirskiy vestnik selskokhozyaystvennoy nauki = Siberian Herald of Agricultural Sciences. 2012;5:19-25. (in Russian)

13. Hano C., Addi M., Bensaddek L., Cronier D., Baltora-Rosset S., Dous-sot J., Maury S. Mesnard F., Chabbert B., Hawkins S., Laine E., Lamblin F. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta. 2006;223:975-989.

14. Hart G.E., Gale M.D., McIntosh R.A. Linkage maps of Triticum aestivum (Hexaploid wheat, 2n = 42, Genomes A, B & D) and T. tauschii (2n = 14, Genome D). Genetic Maps. 6 ed. S.J. O’Brien (Ed.). N. Y.: Cold Spring Harbor Lab. Press, 1993;6.204-6.219.

15. Hijwegen T. Lignification, a possible mechanism of active resistance against pathogens. Neth. J. Plant Pathol. 1963;69:314-317.

16. Konovalov A.A., Shundrina I.K., Karpova E.V. Polymorphism of lignification enzymes in plants: Functional importance and applied aspects. Biology Bulletin Reviews. 2016;6(2):149-163.

17. Konovalov A.A., Shundrina I.K., Karpova E.V., Goncharov N.P.,

18. Kondratenko E.Ya. Chromosomal localization of aromatic alcohol dehydrogenase fast-migrating isoenzyme AAdh1F (CAD1F) gene in Triticum aestivum L. bread wheat. Russian Journal of Genetics. 2016;52(10):1110-1116.

19. Konovalov A.A., Shundrina I.K., Karpova E.V., Nefedov A.A., Goncharov N.P. Inheritance and phenotype expression of functional and null alleles of aromatic alcohol dehydrogenase (CAD) in diploid wheats. Russian Journal of Genetics. 2014;50(11):1161-1168.

20. Konovalov A.A., Shundrina I.K., Karpova E.V., Orlova E.A., Goncharov N.P. Influence of a lignification and mineralization of leaf tissues on resistance of bread wheat plants to a brown rust. Plant Genetics and Genomics for Food Security. The 1st Int. Workshop: Abstract Book. Novosibirsk, Russia, Aug. 26–28. Novosibirsk, 2016;27.

21. Kumar S., Röder M.S., Kumar S., Singh R.P., Joshi A.K., Kumar U. Mapping of spot blotch disease resistance using NDVI as substitute to visual observation in wheat (Triticum aestivum L.). Plant Genetics and Genomics for Food Security. The 1st Int. Workshop: Abstract Book. Novosibirsk, Russia, Aug. 26–28. Novosibirsk, 2016;32.

22. Leonova I.N., Roder M.S., Kalinina N.P., Budashkina E.B. The genetic analysis and localization of the loci controlling the resistance of Tri¬ ticum aestivum × T. timopheevii introgression lines to leaf rust. Genetika = Genetics (Moscow). 2008;44(12):1652-1659. (in Russian)

23. Li X., Ma D., Chen J., Pu G., Ji Y., Lei C., Du Z., Liu B., Ye H., Wang H. Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua. Plant Sci. 2012;193-194:85-95. DOI 10.1016/j.plantsci.2012.05.011.

24. McIntosh R.A., Devos K.M., Dubcovsky J., Rogers W.J., Morris C.F., Appels R., Anderson O.D. Catalogue of gene symbols for wheat: Supplement. Annual Wheat Newsletter. 2005;51:251-285.

25. Menden B., Kohlhoff M., Moerschbacher B.M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry. 2007;68(4):513-520.

26. Mitchell H.J., Hall J.L., Barber M.S. Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol. 1994;104(2):551-556.

27. Moerschbacher B.M., Noll U., Gorrichon L., Reisener H.J. Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol. 1990;93(2):465-470. PMID: 16667489.

28. Pillonel C., Hunziker P., Binder A. Multiple forms of the constitutive wheat cinnamyl alcohol dehydrogenase. J. Exp. Bot. 1992;43(248): 299-305.

29. Radchenko E.E. (Ed.) Izuchenie geneticheskikh resursov zernovykh kultur po ustoychivosti k vrednym organizmam: metodicheskoe posobie [Study of Genetic Resources for Pest Resistance in Grain Crops: Methodical Handbook]. Moscow: Rosselkhozakademiya Publ., 2008. (in Russian).

30. Simons L., Bultman T.L., Sullivan T.J. Effects of methyl jasmonate and an endophytic fungus on plant resistance to insect herbivores. J. Chem. Ecology. 2008;34:1511-1517.

31. Somssich I.E., Wernert P., Kiedrowski S., Hahlbrock K. Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol: NADP+ oxidoreductase. Proc. Natl. Acad. Sci. USA. 1996;93:14199-14203.

32. Tronchet M., Balagué C., Kroj T., Jouanin L., Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthe-sis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology. 2010;11:83-92. DOI 10.1111/j.1364-3703. 2009.00578.x.

33. Varbanova M., Porter K., Lu F., Ralph J., Hammerschmidt R., Jones A.D., Day B. Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber. Plant Physiol. 2011;157(3):1056-1066. DOI 10.1104/pp.111.184358.

34. Zaprometov M.N. Fenolnye soedineniya: rasprostranenie, metabolizm i funktsii v rasteniyakh [Phenolic Compounds: Distribution, Metabolism, and Functions in Plants]. Moscow: Nauka Publ., 1993. (in Russian)


Review

Views: 848


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)