Preview

Vavilov Journal of Genetics and Breeding

Advanced search

VARIABILITY OF MITOCHONDRIAL CYTOCHROME OXYDASE SUBUNIT I GENE SEQUENCE IN SPECIES OF THE GENERA AEDES AND OCHLEROTATUS (DIPTERA: CULICIDAE)

Abstract

Sequence variation in the 538-bp fragment from the 5end of the COI region was analyzed to test its usefulness in the identification of 15 mosquito species of the genera Aedes and Ochlerotatus (Diptera: Culicidae) from Tomsk and Kemerovo regions and 14 species from GenBank. The divergences between congeneric species averaged 7,8 % (from 0,7 to 13,1 %), whereas those for conspecific individuals averaged 0,57 % (0 to 1,6 %). The sequences for four species pairs (3,7 %) showed < 2 % divergence. In most cases, individuals of a single species grouped closely together, but deeper divergences were detected in two species (Och. euedes and Ae. vexans).

About the Authors

N. V. Khrabrova
Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
Russian Federation


Yu. V. Andreeva
Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
Russian Federation


O. V. Vaulin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


S. S. Alekseeva
Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
Russian Federation


A. K. Sibataev
Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
Russian Federation


References

1. Бачевская Л.Т., Переверзева В.В. Внутривидовой полиморфизм фрагмента гена цитохрома b митохондриальной ДНК кеты (Oncorhynchus keta Walbaum) из рек восточной Камчатки и северного побережья Охотского моря // Информ. вестник ВОГиС. 2010. Т. 14. № 3. С. 537–545.

2. Воронова Н.В., Курченко В.П., Буга С.В. Подбор молекулярно-генетических маркеров для видовой диагностики тлей и построения филогенетических систем // Тр. Белорус. гос. ун-та. Сер. Физиологические, биохимические и молекулярные основы функционирования биосистем. 2011. Т. 6. Ч. 1. С. 181–192.

3. Горностаева Р.М. Список комаров (сем. Culicidae) европейской части России // Паразитология. 2000. Т. 34. Вып. 5. С. 428–434.

4. Горностаева Р.М. К ревизии комаров подрода Aedes (Diptera: Culicidae) Палеарктики // Паразитология. 2005. Т. 39. Вып. 6. С. 457–507.

5. Гуцевич А.В., Дубицкий А.М. Новые виды комаров фауны Советского Союза // Паразитол. Сб. 1981. T. 30. C. 97–165.

6. Гуцевич А.И., Мончадский А.С., Штакельберг А.А. Комары семейства Culicidae // Фауна СССР. Насекомые двукрылые. Л.: Наука, 1970. Т. 3. Вып. 4. 384 c.

7. Долбешкин Б.И., Горицкая В.В., Митрофанова Ю.Г. Описание нового вида рода Aedes (in sp.) из Восточной Европы // Паразитол. Сб. Зоол. музея АН СССР. 1930. Т. 1. С. 253–260.

8. Полуконова Н.В., Дёмин А.Г., Мюге Н.С., Шайкевич Е.В. Сравнение Chironomus usenicus и Ch. curabilis с видами группы plumosus (Diptera) по гену митохондриальной ДНК COI и рисунку дисков политенных хромосом // Генетика. 2009. Т. 45. № 8. С. 1029–1035.

9. Удалов М.Б., Беньковская Г.В. Популяционная генетика колорадского жука: от генотипа до фенотипа // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 1. С. 156–172.

10. Храброва Н.В., Сибатаев А.К., Стегний В.Н. Молекулярно-генетические маркеры для идентификации представителей комплекса Culex pipiens (Diptera: Culicidae) // Матер. I Всерос. совещ. по кровососущим насекомым. СПб.: ЗИН РАН, 2006. С. 211–213.

11. Alquezar D.E., Hemmerter S., Cooper R.D., Beebe N.W. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea // BMC Evol. Biol. 2010. 10:392. doi:10.1186/1471-2148-10-392.

12. Bandelt H.-J., Forster P., Röhl A. Median-Joining Networks for Inferring Intraspecifi c Phylogenies // Mol. Biol. Evol. 1999. V. 16. No. 1. P. 37–48.

13. Beebe N.W., Maung J., van den Hurk A.F. et al. Ribosomal DNA spacer genotypes of the Anopheles bancroftii group (Diptera: Culicidae) from Australia and Papua New Guinea // Insect Mol. Biol. 2001. V. 10. No. 5. P. 407–413.

14. Cooper R.D., Waterson D.G.E., Frances S.P. et al. Speciation and distribution of the members of the Anopheles punctulatus (Diptera: Culicidae) group in Papua New Guinea // J. Med. Entomol. 2002. V. 39. P. 16–27.

15. Cywinska A., Hunter F.F., Hebert P.D.N. Identifying Canadian mosquito species through DNA barcodes // Med. Vet. Entomol. 2006. V. 20. P. 413–424.

16. Edwards F.W. Genera Insectorum. Diptera, Family Culicidae. Fascicle 194. Brussels: Desmet-Verteneuil, 1932.

17. Folmer M., Black W., Hoeh R. et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates // Mol. Marine Biol. Biotechnol. 1994. V. 3. No. 5. P. 294–299.

18. Gibson C.M., Kao R.H., Blevins K.K., Travers P.D. Integrative taxonomy for continental-scale terrestrial insect observations // PLoS ONE. 2012. V. 7. No. 5. e37528. doi:10.1371/journal.pone.0037528.

19. Gornostaeva R.M. The status taxa of subgenus Aedes (Diptera: Culicidae: Aedes): Ae. cinereus Meigen, 1818, Ae. esoensis Yamada, 1921, Ae. rossicus Dolbeshkin, Gorickaja, and Mitrofanova, 1930, Ae. geminus Peus, 1970. I. Overwiew // Eur. Mosq. Bull. 2003. No. 15. P. 22–26.

20. Gornostaeva R.M. The status taxa of subgenus Aedes (Diptera: Culicidae: Aedes): Ae. cinereus Meigen, 1818, Ae. esoensis Yamada, 1921, Ae. rossicus Dolbeshkin, Gorickaja, and Mitrofanova, 1930, Ae. geminus Peus, 1970. II. Illustrations // Eur. Mosq. Bull. 2004. No. 18. P. 20–30.

21. Goswami G., Raghavendra K., Nanda N. et al. PCR-RFLP of mitochondrial cytochrome oxidase subunit II and ITS2 of ribosomal DNA: markers for the identifi cation of members of the Anopheles culicifacies complex (Diptera: Culicidae) // Acta Tropica. 2005. V. 95. P. 92–99.

22. Harbach R.E., Kitching I.J. Phylogeny and classifi cation of the Culicidae (Diptera) // Syst. Entomol. 1998. V. 23. P. 327–370.

23. Hebert P.D.N., Cywinska A., Ball S., deWaard J.R. Biological identifi cations through DNA barcodes // Proc. Roy. Soc. Lond. 2003a. Series B. V. 270. P. 313–321.

24. Hebert P.D.N., Ratnasingham S., deWaard J.R. Barcoding animal life: CO1 divergences among closely allied species // Proc. Roy. Soc. Lond. 2003b. Series B. V. 270. P. 596–599.

25. Hebert P.D.N., Stoeckle M.Y., Zemlak T.S., Francis C.M. Identifi cation of birds through DNA barcodes // Public Library Sci. Biol. 2004. V. 2. P. 1657–1663.

26. Higgins D.G., Thompson J.D., Gibson T.J. Using CLUSTAL for multiple sequence alignments // Methods Enzymol. 1996. V. 266. P. 383–402.

27. Kampen H. Integration of Anopheles beklemishevi (Diptera: Culicidae) in a PCR assay diagnostic for palaearctic Anopheles maculipennis sibling species // Parasitol. Res. 2005. V. 97. P. 113–117.

28. Kent R.J., West A.J., Norris D.E. Molecular differentiation of colonized human malaria vectors by 28S ribosomal DNA polymorphism // Amer. J. of Tropical Medicine and Hygiene. 2004. V. 71. P. 514–517.

29. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences // J. Mol. Evol. 1980. V. 16. P. 111–120.

30. Knight K.L., Stone A. A catalog of the mosquitoes of the world (Diptera: Culicidae). 2nd ed. The Thomas Say Foundation. 1977. V. 6. P. 70–72.

31. Krzywinski J., Besansky N.J. Molecular systematics of Anopheles: from subgenera to subpopulations // Annu. Rev. Entomol. 2003. V. 48. P. 111–139.

32. Kumar N.P., Rajavel A. R., Natarajan R., Jambulingam P. // J. Med. Entomol. 2007. V. 44(1). P. 1–7.

33. Laboudi M., Faraj Ch., Sadak A. DNA barcodes confi rm the presence of a single member of the Anopheles maculipennis group in Morocco and Algeria: An. sicaultiis conspecifi c with An. labranchiae // Acta Tropica. 2011. V. 118. P. 6–13.

34. Marrelli M.T., Floeter-Winter L.M., Malafronte R.S. et al. Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences // Med. Vet. Entomol. 2005. V. 19. P. 208–218.

35. Michel A.P., Guelbeogo W.M., Grushko O. et al. Molecular differentiation between chromosomally defi ned incipient species of Anopheles funestus // Insect Mol. Biol. 2005. V. 14. No. 4. P. 375–387.

36. Smith J.L., Fonseca D.M. Rapid assays for identifi cation of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae) // Am. J. Tropical Med. Hygiene. 2004. V. 70. P. 339–345.

37. Tamura K., Peterson D., Peterson N. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. 2011. V. 28. No. 10. P. 2731–2739.

38. Thelwell N.J., Huisman R.A., Harbach R.E. et al. Evidence for mitochondrial introgression between Anopheles bwambae and Anopheles gambiae // Insect Mol. Biol. 2000. V. 9. No. 2. P. 203–210.

39. Van Bortel W., Trung H.D., Manh N.D. et al. Identifi cation of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences // Tropical Med. Intern. Health. 1999. V. 4. P. 257–265.

40. Wang G., Li C., Guo X. et al. Identifying the main mosquito species in China based on DNA barcoding // PLoS ONE. 2012. V. 7. No. 10. e47051.doi:10.1371/journal. pone.0047051

41. Ward R.A. Second supplement to a catalog of the mosquitoes of the world (Diptera: Culicidae) // Mosq. Syst. 1984. V. 16. No. 3. 233 p.

42. Zavortink T.J. Classical taxonomy of mosquitoes – a memorial to John N. Belkin // J. Am. Mosquito Control Assoc. 1990. V. 6. P. 593–599.


Review

Views: 651


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)