On three cultivated subspecies of pea (Pisum sativum L.)
https://doi.org/10.18699/VJ17.287
Abstract
The common pea (Pisum sativum L.) is an important crop characterised by high diversity, taxonomic fixation of which may be important for selection as it attracts attention to the taxa recognised, although this recognition can be poorly justified. Two subspecies of the common pea, traditionally recognised in Russian botanical and genetical literature, Pisum sativum L. subsp. transcaucasicum Makasheva from Transcaucasia and Pisum sativum L. subsp. asiaticum Govorov from Anterior and Central Asia and North Africa, are considered, as well as their diagnostic characters and arguments in favour of their subspecific status. P. sativum subsp. transcaucasicum is characterised by small seeds, three pairs of small diamond-shaped leaflets, vigorous branching and full reproductive compatibility with Pisum sativum L. subsp. sativum and has a very limited range in Georgia. As a very local landrace it hardly deserves a subspecific status, however it is reasonable to consider it as a variety, Pisum sativum L. subsp. sativum var. transcaucasicum (Makasheva) Kosterin comb. nov. The subspecies P. sativum subsp. asiaticum practically misses diagnostic characters which are limited to small flowers with presence of some flavonoid pigmentation in the corolla. In fact, this subspecies has accumulated very diverse landraces from most of the Old World. Absence of reliable diagnostic characters makes it impossible to recognise this subspecies. Thus, P. sativum subsp. asiaticum is a later synonym of P. sativum subsp. sativum, to which all cultivated representatives of P. sativum L. should be attributed. A peculiar form traditionally cultivated in Egypt was described as the species Pisum jomardii Schrank and subsequently considered also in the ranks of subspecies and variety; it would better be considered as Pisum sativum L. subsp. sativum var. jomardii (Schrank) Govorov.
Keywords
About the Author
O. E. KosterinRussian Federation
References
1. Alefeld F. Landwirthschaftliche Flora. VIII. Berlin. 1866.
2. Berdnikov V.A., Bogdanova V.S., Rozov S.M., Kosterin O.E. Formation of diversity of histone H1 genes in the course of cultural evolution of pea. In: Vavilovskoe Nasledie v Sovremennoy Biologii. Moscow: Nauka Publ., 1989;72-89. (in Russian)
3. Berdnikov V.A., Bogdanova V.S., Rozov S.M., Kosterin O.E. Geographic patterns of histone H1 allelic frequencies formed in the course of Pisum sativum L. (pea) cultivation. Heredity. 1993;71:199-209. DOI 10.1038/hdy.1993.125.
4. Blixt S. Mutation genetics in Pisum. Agri Hort. Genet. 1972;30:1-293. Bogdanova V.S., Kosterin O.E., Yadrikhinskiy A.K. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus. Theor. Appl. Genet. 2014;127:1163-1172. DOI 10.1007/s00122-014-2288-9.
5. Coulot P., Rabaute P. Monographie de Leguminosae de France. 4. Tri-bus des Fabeae, des Cicereae et des Genisteae. Bulletin de la Société Botanique du Centre-Ouest. 2016;46:1-902.
6. Coyne C.J., McGee R.J., Redden R.J., Ambrose M.J., Furman B.J., Miles C.A., Genetic adjustment to changing climate: pea. In: S.S. Ya- dav, J.H. Redden, H. Lotze-Campen, A.J. Hall (Eds.) Crop Adaptation to Climate Change. N. Y.: John Wiley & Sons, 2011;238-250.
7. Dyachenko E.A., Ryzhova N.N., Kochieva E.Z., Vishnyakova M.A. Molecular genetic diversity of the pea (Pisum sativum L.) from the Vavilov Research Institute collection by the AFLP analysis. Russ. J. Genet. 2017;50:916-924. DOI 10.7868/S0026898415040023.
8. Ellis T.H.N., Poyser S.J., Knox M.R., Vershinin A.V., Ambrose M.J. Polymorphism of insertion sites of Ty1¬copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol. General Genet. 1998;260:9-19. DOI 10.1007/PL00008630.
9. Govorov L.I. Pea of Afghanistan (on the problem of the origin of the cultivated pea). Trudy po prikladnoy botanike, genetike i selektsii = Bulletin of Applied Botany, Genetics and Plant Breeding. 1928;19: 497-522. (in Russian)
10. Govorov L.I. Pea. Kulturnaya flora SSSR. Vol. IV. Grain legumes. Moscow: Gosudarstvennoe izdatelstvo sovkhoznoi i kolkhoznoi lit-eratury, 1937;229-336. (in Russian)
11. Hedrick U.P., Hall F.R., Hawthorn L.V., Berger A. The Vegetables of New York: Report of the New York State Agricultural Experiment Station for the Year During Ending June 30, 1928. Vol. 1. Pt. 1. Peas of New York. Albany: J.B. Lyon Company, Printers, 1928.
12. Integrated Taxonomic Information System, online resource, 2017. www.itis.gov. Accessed 05.08.2017.
13. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Oberreifenberg: Koeltz Scientific Books, 2012.
14. Jing R., Vershinin A., Grzebota J., Shaw P., Smýkal P., Marshall D., Ambrose M.J., Ellis T.H.N., Flavell A.J. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol. Biol. 2010;10:44. DOI 10.1186/1471-2148-10-44.
15. Kosterin O.E. Pea (Pisum sativum L.): the uneasy fate of the first genetical object. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Beeding. 2015;19(1):13-26. DOI 10.18699/ VJ15.002. (in Russian)
16. Kosterin O.E. Abyssinian pea (Lathyrus schaeferi Kosterin nom. nov. pro Pisum abyssinicum A. Br.) is a problematic taxon. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(2):158-169. DOI 10.18699/VJ17.234. (in Russian)
17. Kosterin O.E., Bogdanova V.S. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genet. Res. Crop Evol. 2008;55:735-755. DOI 10.1007/s10722-007-9281-y.
18. Kosterin O.E., Bogdanova V.S., Gorel F.L., Rozov S.M., Trusov Yu.A., Berdnikov V.A. Histone H1 of the garden pea (Pisum sativum L.): composition, developmental changes, allelic polymorphism and inheritance. Plant Sci. 1994;101:189-202. https://doi.org/10.1016/ 0168-9452(94)90255-0.
19. Kosterin O.E., Bogdanova V.S., Kechin A.A., Zaytseva O.O., Yadrikhinskiy A.K. Polymorphism in a histone H1 subtype with a short N-terminal domain in three legume species (Fabaceae, Fabaeae). Mol. Biol. Rep. 2012;39:10681-10695. DOI 10.1007/s11033-012-1959-3.
20. Kosterin O.E., Zaytseva O.O., Bogdanova V.S., Ambrose M. New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatuis (Beib.) Schmahl. Genet. Res. Crop. Evol. 2010;57:733-739. DOI 10.1007/s10722-009-9511-6.
21. Lamprecht H. Zur Artberechtigung Pisum elatius Stev. und Jomardi Schrank. Agri Hort. Genet. 1956;14:5-18.
22. Lehmann C. Das morphologische system der Saarerbsen. Der Züchter. 1954;24:316-337.
23. Lehmann C., Blixt S. Artificial infraspecific classification in relation to phenotypic manifestation of certain genes in Pisum. Agri Hort. Genet. 1984;42:48-74.
24. Makasheva R.Kh. Flora of Cultivated Plants. Vol. IV. Grain legumes. Pt. I. Pea. Leningrad: Kolos Publ., 1979. (in Russian)
25. Maxted N., Ambrose M. Peas (Pisum L.). In: Plant Genetic Resources of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture 39. N. Maxted, S.J. Bennett (Eds.). Dordrecht: Kluw. Acad. Publ., 2001;181-190.
26. Mendel G. Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn. Bd. IV für das Jahr 1865 (Abhandlungen). 1866:3-47.
27. Schaefer H., Hechenleitner P., Santos-Guerra A., Menezes de Sequeira M., Pennington R.T., Kenicer G., Carine M.A. Systematics, bio-geography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 2012;12:250. DOI 10.1186/1471-2148-12-250.
28. Schrank F. Flora Monacensis. T. 4. Monachii, 1818.
29. Singh R.J. Plant Cytogenetics. 2nd ed. Boca Raton: CRC Press, 2003. Vershinin A.V., Allnutt T.R., Knox M.R., Ambrose M.J., Ellis T.H.N.
30. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol. Biol. Evol. 2003;20(12):2067-2075. DOI 10.1093/molbev/msg220.
31. Weiss E., Zohary D. The Neolithic Southwest Asian founder crops, their biology and archaeobotany. Curr. Anthropol. 2011;52:S237-S254. DOI 10.1086/658367.
32. Zaytseva O.O., Bogdanova V.S., Kosterin O.E. Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene. 2012;504:192-202. http://dx. doi.org/10.1016/j.gene.2012.05.026.
33. Zaytseva O.O., Bogdanova V.S., Mglinets A.V., Kosterin O.E. Refinement of the collection of wild peas (Pisum L.) and search for the area of pea domestication with a deletion in the plastidic psbA¬trnH spacer. Genet. Resour. Crop Evol. 2017;64:1417-1430. DOI 10.1007/ s10722-016-0446-4.
34. Zaytseva O.O., Gunbin K.V., Mglinets A.V., Kosterin O.E. Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution. Gene. 2015;556:235-244. http://dx.doi.org/ 10.1016/j.gene.2014.11.062.
35. Zhukovskiy P.M. Cultivated plants and their relatives (systematics, geography, ecology, origin, use). 2nd ed. Moscow: Kolos Publ., 1964. (in Russian)
36. Zohary D., Hopf M. Domestication of Plants in the Old World. 3rd ed. Oxford: Clarendon Press, 2000.