Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Generation of American mink induced pluripotent stem cells: a protocol

https://doi.org/10.18699/VJ17.288

Abstract

Mammalian genome reprogramming has been studied for more than half a century. First, Sir John Gurdon showed the possibility of differentiated cell genome reprogramming by enucleated oocyte factors in 1962. Dr. Shinya Yamanaka produced induced pluripotent stem (iPS) cells from mouse fibroblasts by the use of just four transcription factors in 2006: Oct4, Klf4, Sox2, and c-Myc. Generation of iPS cells put a question about the reprogramming completeness: do genes derived from fibroblasts retain their expression? And are the features of iPS cells in compliance with those of embryonic stem (ES) cells that serve as a standard? To date, iPS cells have been produced for tens of species, while ES cells, for less than twenty. In 1993 American mink (Neovison vison) ES cells were produced in the Institute of Cytology and Genetics SB RAS. That created a unique opportunity for comparison of induced and embryo-derived pluripotent cells. In 2015 we produced American mink iPS cells and showed fibro-blast genome reprogramming at the level of gene expression and divided genes into four groups: reprogrammed, with intermediate expression, non-reprogrammed, and the ones with a “novel” expression pattern. Thus, an opportunity to study pluripotency and differentiation on two pluripotent cell types, ES and iPS cells, was added for one more species. In this article we present a detailed protocol for generation of American mink iPS cells with human OCT4, KLF4, SOX2, and c­MYC genes. In addition, we briefly describe necessary methods for their analysis: morphology, cytogenetic analysis, PCR with reverse transcription for the presence of pluripotency “marker” genes, and teratoma formation test in immunodeficient mice. This protocol allows reliable and efficient generation of American mink iPS cells from embryonic fibroblasts.

 

About the Authors

I. E. Pristyazhnyuk
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


A. G. Menzorov
Institute of Cytology and Genetics SB RAS, Novosibirsk; Novosibirsk State University, Novosibirsk
Russian Federation


References

1. Baird A., Barsby T., Guest D.J. Derivation of canine induced pluripo-tent stem cells. Reprod. Domest. Anim. 2015;50(4):669-676. DOI 10.1111/rda.12562.

2. Buta C., David R., Dressel R., Emgård M., Fuchs C., Gross U., Healy L., Hescheler J., Kolar R., Martin U., Mikkers H., Müller F.J., Schneider R.K., Seiler A.E., Spielmann H., Weitzer G. Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res. 2013;11(1):552-562. DOI 10.1016/j.scr.2013.03.001.

3. Hentze H., Soong P.L., Wang S.T., Phillips B.W., Putti T.C., Dunn N.R. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009; 2(3):198-210. DOI 10.1016/j.scr.2009.02.002.

4. Hogan B., Beddington R., Costantini F., Lacy L. Manipulating the Mouse Embryo. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994.

5. Kizilova E.A. Optimization of the teratoma formation test. Geny i kletki = Genes & Cells. 2016;11(2):119-128. (in Russian)

6. Mandahl N., Fredga K. Q-, G- and C-band patterns of the mink chromosomes. Hereditas. 1975;81(2):211-220.

7. Mathew R., Jia W., Sharma A., Zhao Y., Clarke L.E., Cheng X., Wang H., Salli U., Vrana K.E., Robertson G.P., Zhu J., Wang S. Robust activation of the human but not mouse telomerase gene during the induction of pluripotency. FASEB J. 2010;24(8):2702-2715. DOI 10.1096/fj.09-148973.

8. Menzorov A.G., Matveeva N.M., Markakis M.N., Fishman V.S., Christensen K., Khabarova A.A., Pristyazhnyuk I.E., Kizilova E.A., Cirera S., Anistoroaei R., Serov O.L. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC Genomics. 2015;16(Suppl. 13):S6. DOI 10.1186/1471-2164- 16-S13-S6.

9. Rouvinen-Watt K., Harris L., Dick M., Pal C., Lei S., Mustonen A.M., Nieminen P. Role of hepatic de novo lipogenesis in the development of fasting-induced fatty liver in the American mink (Neovison vison). Br. J. Nutr. 2012;108(8):1360-1370. DOI 10.1017/ S0007114511006775.

10. Sukoyan M.A., Vatolin S.Y., Golubitsa A.N., Zhelezova A.I., Semenova L.A., Serov O.L. Embryonic stem cells derived from morulae, inner cell mass, and blastocysts of mink: comparisons of their pluripotencies. Mol. Reprod. Dev. 1993;36(2):148-158. DOI 10.1002/ mrd.1080360205.

11. Takahashi K., Okita K., Nakagawa M., Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2007;2(12): 3081-3089. DOI 10.1038/nprot.2007.418.

12. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024.

13. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917-1920. DOI 10.1126/science.1151526.


Review

Views: 1670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)