Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The role of the pAbp gene encoding the cytoplasmic poly(A)-binding protein in spermatogenesis of Drosophila melanogaster

https://doi.org/10.18699/VJ17.26-o

Abstract

The Drosophila melanogaster pAbp gene encodes the cytoplasmic poly(A)-binding protein (PABP). Cytoplasmic PABPs participate in the metabolic pathways of the mRNA: translation initiation and termination, cytoplasmic polyadenylation/deadenylation, mRNA stability, mRNA degradation. Despite the extensive biochemical and structural characterization, relatively little is known about the biological roles of PABPs in the processes of cellular development and differentiation. In Drosophila spermatogenesis, posttranscriptional mechanisms of gene regulation play an important role, so cytoplasmic PABP can have significant function in this process. Deletion of PABP leads to embryonic lethality. However, some flies carrying combinations of mutant pAbp alleles survive but display male sterility and show defects in spermatogenesis. It has previously been shown that hypomorphic pAbp mutations cause a number of meiotic defects, abnormalities of Nebenkern formation. These data provide an insight into the effect of pAbp mutation on the individual events of spermatogenesis, but they do not cover the entire process. We studied spermatogenesis in pAbpallele heterozygotes by transmission electron and fluorescent light microscopy. We showed that cellular mitochondria were the primary structural target of the mutation. Abnormal mitochondria were less structured, swollen, had transparent matrix and depleted cristae. Further mutation had a polymorphous effect and induced anomalies in the ultrastructure of mature spermatocytes, defects in Nebenkern formation and division, axial complex formation, shutdown of spermatogenesis during spermatid elongation. Thus our data show a significant role of PABP in structural transformations of male germ cells during entire spermato-genesis.

 

About the Authors

E. U. Bolobolova
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


E. M. Baricheva
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


N. V. Dorogova
Institute of Cytology and Genetics SB RAS, Novosibirsk
Russian Federation


References

1. Blagden S.P., Gatt M.K., Archambault V., Lada K., Ichihara K., Lilley K.S., Inoue Y.H., Glover D.M. Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syn-cytial embryo development. Dev. Biol. 2009;334:186-197. DOI 10.1016/j.ydbio.2009.07.016.

2. Bolobolova E.U., Yudina O.S., Dorogova N.V. Drosophila tumor suppressor Merlin is essential for morphogenesis of mitochondria during sperm formation. Tsitologiya = Cytology. 2011;53(1):31-38. (in Russian).

3. Clouse K.N., Ferguson S.B., Schüpbach T. Squid, Cup and PABP 55B function together to regulate gurken translation in Drosophila. Dev. Biol. 2008;313:713-724. DOI 10.1016/j.ydbio.2007.11.00.

4. Dorogova N.V., Bolobolova E.U., Akhmetova K.A., Fedorova S.A. Drosophila male-sterile mutation emmenthal specifically affects the mitochondrial morphogenesis. Protoplasma. 2013;250(2):515-520. DOI 10.1007/s00709-012-0434-2.

5. Friedman J.R., Lackner L.L., West M., DiBenedetto J.R., Nunnari J., Voeltz G.K. ER tubules mark sites of mitochondrial division. Science. 2011;334:358-362. DOI 10.1126/science.1207385.

6. Fuller M. The Development of Drosophila melanogaster. N. Y.: Cold Spring Harbor Laboratory Press, 1993.

7. Gallie D.R. Insights from a paradigm shift: how the poly(A)-binding protein brings translating mRNAs full circle. New J. Sci. 2014;2014: 1-16. DOI 10.1155/2014/873084.

8. Giorgi C., Stefani D., Bononi A., Rizzuto R., Pinton P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 2009;41:1817-1827. DOI 10.1016/j.biocel.2009.04.010.

9. Gogvadze V., Robertson J.D., Enoksson M., Zhivotovsky B., Orrenius S. Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochem. J. 2004;378(1):213-217. DOI 10.1042/BJ20031193.

10. Gorgoni B., Richardson W.A., Burgess H.M., Anderson R.C., Gavin S., Wilkie G.S., Gautier P., Martins J.P.S., Brook M., Sheets M.D., Gray N.K. Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc. Natl. Acad. Sci. USA. 2011;109(19):7844-7849. DOI 10.1073/pnas. 1017664108.

11. Goss D.J., Kleiman F.E. Poly(A)-binding proteins: are they all created equal? WIREs RNA. 2013;4:167-179. DOI 10.1002/wrna.1151.

12. Hales K.G., Fuller M.T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 1997; 90(1):121-129. DOI 10.1016/S0092-674(00)80319-0.

13. Halestrap A.P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem. J. 1987; 244(1):159-164.

14. Kaasic A., Safiulina D., Zharkovsky A., Veksler V. Regulation of mitochondrial matrix volume. Am. J. Physiol. Cell Phisiol. 2007;292:157-163. DOI 10.1152/ajpcell.00272.2006.

15. Ko S., Park J.-H., Lee A.-R., Kim E., Kim J., Kawasaki I., Shim Y.-H. Two mutations in pab¬1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans. Mol. Cells. 2010;30:167-172. DOI 10.1007/ s10059-010-0103-2.

16. Lindsley D.L., Tokuyasu K.T. Genetics and Biology of Drosophila. N. Y.: Acad. Press, 1980.

17. Mangus D.A., Evans M.C., Jacobson A. Poly(A)-binding proteins: multi-functional scaffolds for the posttranscriptional control of gene expression. Genome Biol. 2003;4(7):223. DOI 10.1186/gb-2003-4-7-223.

18. McQuibban A.G., Joza N., Megighian A., Scorzeto M., Zanini D., Reipert S., Richter C., Schweyens R.J., Nowikovsky K. A Drosophila mutant of LETM1, a candidate gene for seizures in Wolf-Hirschhorn syndrome. Hum. Mol. Genet. 2010;19(6):987-1000. DOI 10.1093/hmg/ddp563.

19. Pertceva J.A., Dorogova N.V., Bolobolova E.U., Nerusheva O.O., Fedorova S.A., Omelyanchuk L.V. The role of Drosophila hyperplastic discs gene in spermatogenesis. Cell. Biol. Int. 2010;34(10):991-996. DOI 10.1042/CBI20100105.

20. Pizzo P., Pozzan T. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell. Biol. 2007; 17(10):511-517. DOI 10.1016/j.tcb.2007.07.011.

21. Poole A.C., Thomas R.E., Andrews L.A., McBride H.M., Whit-worth A.J., Leo J., Pallanck L.J. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. USA. 2008; 105(5):1638-1643. DOI 10.1073/pnas.0709336105.

22. Sachs A.B., Davis R.W., Kornberg R.D. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol. Cell. Biol. 1987;7(9):3268-3276. DOI 10.1128/MCB.7.9.3268.

23. Sigrist S.J., Thiel P.R., Reiff D.F., Lachance P.E., Lasko P., Schuster C.M. Postsynaptic translation affects the efficacy and morphology of neuromuscular junctions. Nature. 2000;405(6790):1062-1065. DOI 10.1038/35016598.

24. Stanley H.P., Bowman J.T., Romrell L.J., Reed S.C., Wilkinson R.F. Fine structure of normal spermatid differentiation in Drosophila me¬lanogaster. J. Ultrastruct. Res. 1972;41:433-466.

25. Steger K. Haploid spermatids exhibit translationally repressed mRNAs. Anat. Embriol. 2001;203:323-334.

26. Thakurta A.G., Yoon J.H., Dhar R. Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pab1p, is a non-essential, shuttling protein that facilitates mRNA export. Yeast. 2002;19:795-802. DOI 10.1002/yea.876.

27. Van der Bleik A.M., Shen Q., Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 2013;5:a011072. DOI 10.1101/cshperspect.a011072.

28. Westermann B. Molecular machinery of mitochondrial fusion and fission. J. Biol. Chem. 2008;283(20):13501-13505. DOI 10.1074/jbc. R800011200.

29. White-Cooper H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction. 2010;139:11-21. DOI 10.1530/REP-09-0083.


Review

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)