Эффекты ингибирования звеньев ренин-ангиотензиновой системы головного мозга у крыс НИСАГ с наследственной индуцированной стрессом артериальной гипертонией
https://doi.org/10.18699/VJ17.29-o
Аннотация
Ренин-ангиотензиновая система (РАС) – одна из основных систем, регулирующих артериальное давление и водно-солевой гомеостаз организма и участвующих в патогенезе сердечно-сосудистых заболеваний. Ангиотензиновые пептиды – продукты ферментативного гидролиза ангиотензиногена – могут синтезироваться
как в кровяном русле, так и в тканях, в том числе в различных отделах головного мозга. Исследования локальных тканевых РАС
в контексте артериальной гипертонии ведутся уже достаточно давно. Показано, что стойкое повышение уровня артериального давления (АД) часто ассоциировано с изменениями в работе центральной (мозговой) РАС в различных моделях гипертонической болезни (ГБ) и у людей. Тем не менее до сих пор до конца не ясно, являются ли данные изменения сами по себе достаточными для формирования гипертензивного статуса и можно ли использовать звенья центральной РАС в качестве мишеней для терапии гипертонической болезни. В работе исследовано влияние длительного ингибирования РАС головного мозга на артериальное давление и экспрессию генов РАС в тканях головного мозга и почке у крыс с наследственной стресс-индуцированной артериальной гипертонией (линия НИСАГ). Ингибирование проводили с использованием широко распространенных фармакологических агентов – лозартана и беназеприла. Для доставки препаратов в боковой желудочек мозга использовали осмотические минипомпы. Эксперимент продолжался 13 дней. Показано, что длительное ингибирование центральной РАС, в частности рецептора ангиотензина II первого типа, у крыс НИСАГ способно приводить к снижению АД и значительным изменениям в уровне экспрессии генов мозговой РАС. При этом содержание мРНК генов РАС почки у крыс НИСАГ не изменяется. Таким образом, показано, что мозговая РАС играет важную роль в патогенезе и поддержании гипертензивного статуса при стресс-индуцированной форме ГБ.
Ключевые слова
Об авторах
Л. О. КлимовРоссия
М. А. Рязанова
Россия
Л. А. Федосеева
Россия
А. Л. Маркель
Россия
Список литературы
1. Amstislavsky S., Welker P., Frühauf J.-H., Maslova L., Ivanova L., Jensen B., Markel A.L., Bachmann S. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH). Histochem. Cell Biol. 2006;125(6):651-659.
2. Antonov Ye.V., Alexandrovich Yu.V., Seryapina A.A., Klimov L.O., Markel A.L. Stress and arterial hypertension: ISIAH rat strain. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(4):455-459. DOI 10.18699/VJ15.060. (in Russian)
3. Atlas S.A. The renin-angiotensin aldosterone system: pathophysiologi-cal role and pharmacologic inhibition. J. Manag. Care Pharm. 2007; 13(8):S9-S20.
4. Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 2010;50: 439-465.
5. Carlson S.H., Wyss J.M. Neurohormonal regulation of the sympathetic nervous system: New Insights into central mechanisms of action. Curr. Hypertens. Rep. 2008;10(3):233-240.
6. Casto R., Phillips M.I. Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats. Am. J. Physiol. 1986;250(2):R193-R198.
7. Cato M.J., Toney G.M. Angiotensin II excites paraventricular nucleus neurons that innervate the rostral ventrolateral medulla: an in vitro patch-clamp study in brain slices. J. Neurophysiol. 2005;93(1):403-413. DOI 10.1152/jn.01055.2003.
8. Chen Q., Pan H.L. Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons. J. Neurophysiol. 2007;97(5):3279-3287.
9. Crowley S.D., Gurley S.B., Oliverio M.I., Pazmino A.K., Griffiths R., Flannery P.J., Spurney R.F., Kim H.S., Smithies O., Le T.H., Coff-man T.M. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J. Clin. Invest. 2005;115(4):1092-1099.
10. Dampney R., Coleman M., Fontes M., Hirooka Y., Horiuchi J., Li Y.W., Polson J., Potts P., Tagawa T. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 2002;29(4):261-268.
11. Fedoseeva L.A., Ryazanova M.A., Antonov E.V., Dymshits G.M., Markel A.L. Renin-angiotensin system gene expression in the kidney and in the heart in hypertensive ISIAH rats. Biochemistry (Mos-cow). Suppl. Series B: Biomedical Chemistry. 2011;5(1):37-43.
12. Ferrario C.M. Role of angiotensin II in cardiovascular disease – therapeutic implications of more than a century of research. J. Renin-Angiotensin-Aldosterone Syst. 2006;7(1):3-14.
13. Ferreira A.J., Santos R.A.S., Bradford C.N., Mecca A.P., Sumners C., Katovich M.J., Raizada M.K. Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. Hypertension. 2010;55(2):207-213.
14. Gabor A., Leenen F.H.H. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J. Appl. Physiol. 2012; 113(8):1294-1303. DOI 10.1152/japplphysiol.00553.2012.
15. Ganten D., Speck G. The brain renin-angiotensin system: a model for the synthesis of peptides in the brain. Biochem. Pharmacol. 1978; 27(20):2379-2389.
16. Gao L., Wang W., Li Y.L., Schultz H.D., Liu D., Cornish K.G., Zucker I.H. Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am. J. Physiol. Heart Circ. Physiol. 2005;288(5):H2271-H2279.
17. Gao L., Zucker I.H. AT2 receptor signaling and sympathetic regulation. Curr. Opin. Pharmacol. 2011;11(2):124-130. DOI 10.1016/j.coph. 2010.11.004.
18. Goyal R., Goyal D., Leitzke A., Gheorghe C.P., Longo L.D. Brain re-nin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod. Sci. 2010;17(3):227-238. DOI 10.1177/1933719109351935.
19. Grobe J.L., Grobe C.L., Beltz T.G., Westphal S.G., Morgan D.A., Xu D., de Lange W.J., Li H., Sakai K., Thedens D.R., Cassis L.A., Rahmouni K., Mark A.L., Johnson A.K., Sigmund C.D. The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab. 2010;12(5):431-442. DOI 10.1016/j.cmet.2010.09.011.
20. Hilzendeger A.M., Morgan D.A., Brooks L., Dellsperger D., Liu X., Grobe J.L., Rahmouni K., Sigmund C.D., Mark A.L., A brain leptinrenin angiotensin system interaction in the regulation of sympa the-tic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 2012;303(2): H197-H206. DOI 10.1152/ajpheart.00974.2011.
21. Hirooka Y. Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens. Res. 2011;34(4):407-412. DOI 10.1038/hr.2011.14.
22. Huang B.S., Cheung W.J., Wang H., Tan J., White R.A., Leenen F.H.H. Activation of brain renin-angiotensin-aldosterone system by central sodium in Wistar rats.Am. J. Physiol. Heart Circ. Physiol. 2006; 291(3):H1109-H1117. DOI 10.1152/ajpheart.00024.2006.
23. Huang M., Li X., Meng Y., Xiao B., Ma Q., Ying S., Wu P., Zhang Z. Upregulation of angiotensin-converting enzyme (ACE) 2 in hepatic fibrosis by ACE inhibitors. Clin. Exp. Pharmacol. Physiol. 2010; 37(1):e1-e6. DOI 10.1111/j.1440-1681.2009.05302.x.
24. Ishiyama Y., Gallagher P.E., Averill D.B., Tallant E.A., Brosnihan K.B., Ferrario C.M. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43:970-976. DOI 10.1161/01.HYP. 0000124667.34652.1a.
25. Kishi T., Hirooka Y., Sunagawa K. Brain angiotensin II type 1 receptor blockade improves dairy blood pressure variability via sympatho-inhibition in hypertensive rats. Int. J. Hypertension. 2015;1-7. DOI 10.1155/2015/759629.
26. Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. Genome-wide transcriptome analysis of hypothalamus in rats with Inherited stress-induced arterial hypertension. BMC Genet. 2016; 17(1):13. DOI 10.1186/s12863-015-0307-8.
27. Klimov L.O., Fedoseeva L.A., Ryazanova M.A., Dymshits G.M., Markel A.L. Expression of renin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2013;154(3):357-360.
28. Leenen F.H.H. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am. J. Hypertens. 2014; 27(8):1024-1032. DOI 10.1093/ajh/hpu066.
29. Markel A.L. Development of a new strain of rats with inherited stress-induced arterial hypertension. Genetic Hypertension Colloque INSERM. 1992;(218):405-407.
30. McKinley M.J., Albiston A.L., Allen A.M., Mathai M.L., May C.N., McAllen R.M., Oldfield B.J., Mendelsohn F.A.O., Chai S.Y. The brain renin-angiotensin system: location and physiological roles. Int. J. Biochem. Cell Biol. 2003;35(6):901-918. DOI 10.1016/S1357-2725(02)00306-0.
31. Medeiros I.A., Zhang B.L., Bertolino S., Sassard J. Pressure control of renal renin release in Lyon hypertensive rats. J. Hypertens. 1994; 12(8):871-877.
32. Merrill D.C., Thompson M.W., Carney C.L., Granwehr B.P., Schlager G., Robillard J.E., Sigmund C.D. Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J. Clin. Invest. 1996;97(4): 1047-1055. DOI 10.1172/JCI118497.
33. Nakata T., Takeda K., Harada S., Oguni A., Hatta T., Kawa T., Itoh H., Sasaki S., Nakagawa M. Role of the central nervous system in the development of hypertension produced by chronic nitric oxide blockade in rats. Hypertens. Res. 2001;24(1):39-45. DOI 10.1291/ hypres.24.39.
34. Okuno T., Nagahama S., Lindheimer M.D., Oparil S. Attenuation of the development of spontaneous hypertension in rats by chronic central administration of captopril. Hypertension. 1983;5(5):653-662. DOI 10.1161/01.HYP.5.5.653.
35. Paxinos G., Watson C. The rat brain in stereotaxic Coordinates. N. Y.: Elsevier, 2007.
36. Qi J., Zhang D.M., Suo Y.P., Song X.A., Yu X.J., Elks C., Lin Y.X., Xu Y.Y., Zang W.J., Zhu Z., Kang Y.M. Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Car-diovasc. Toxicol. 2013;13(1):48-54. DOI 10.1007/s12012-012- 9184-9.
37. Reja V., Goodchild A.K., Phillips J.K., Pilowsky P.M. Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2006;33(8):690-695. DOI 10.1111/j.1440-1681.2006.04420.x.
38. Saigusa T., Arita J. ANG II Modulates both slow and rapid baroreflex responses of barosensitive bulbospinal neurons in the rabbit rostral ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;306(8): R538-R551. DOI 10.1152/ajpregu.00285.2013.
39. Tank J., Jordan J., Diedrich A., Stoffels M., Franke G., Faulhaber H.D., Luft F.C., Busjahn A. Genetic influences on baroreflex function in normal twins. Hypertension. 2001;37(3):907-910. DOI 10.1161/01. HYP.37.3.907.
40. Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol. 2002;89(2A):3A-9A; DOI 10.1016/S0002-9149(01)02321-9.
41. Wright J.W., Harding J.W. The brain renin-angiotensin system: A diversity of functions and implications for CNS diseases. Pflugers Arch. 2013;465(1):133-151. DOI 10.1007/s00424-012-1102-2.
42. Yoshida M., Watanabe Y., Yamanishi K., Yamashita A., Yamamoto H., Okuzaki D., Shimada K., Nojima H., Yasunaga T., Okamura H., Matsunawga H., Yamanishi H. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: Gene expression profiles in the brain. Int. J. Mol. Med. 2014;33(4):887-896. DOI 10.3892/ijmm.2014.1631.
43. Young C.N., Davisson R.L. Angiotensin-II, the brain, and hypertension: an update. Hypertension. 2015;66(5):920-926. DOI 10.1161/ HYPERTENSIONAHA.115.03624.
44. Zanutto B.S., Valentinuzzi M.E., Segura E.T. Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius. Biomed. Eng. Online. 2010;9:4. DOI 10.1186/1475-925X-9-4.
45. Zimmerman M.C., Lazartigues E., Sharma R.V., Davisson R.L. Hypertension сaused by angiotensin II infusion involves increased su-peroxide production in the central nervous system. Circ. Res. 2004; 95(2):210-216. DOI 10.1161/01.RES.0000135483.12297.e4.