Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Некодирующие части генома как основа эпигенетической наследственности

https://doi.org/10.18699/10.18699/VJ17.30-o

Аннотация

Анализ литературных данных дает возможность предположить, что основой эпигенетических преобразований геномов в онтогенезе являются особенности распределения, количества и состава мобильных генетических элементов. Транспозоны составляют большую часть геномов многоклеточных эукариот, эволюционное сохранение данных структур сопряжено с двумя универсальными механизмами управления дифференцировки клеток – процессингом некодирующих РНК и регуляцией сплайсинга. Данные универсальные механизмы первоначально были направлены на защиту от вирусов и мобильных генетических элементов, однако в дальнейшем кооперация защитных систем с механизмами управления взаимосвязи клеток и их дифференцировкой стала причиной возникновения и эволюции многоклеточных. В пользу этого говорят эволюционное сохранение комплекса взаимосвязанных ферментов Drosha, Dicer, Argonaut, RdRP и их гомологов практически у всех многоклеточных, а также отсутствие данных ферментов у одноклеточных. Интроны происходят от мобильных генетических элементов, в распространении и регуляции интронов важную роль играют транспозоны c их продуктами экспрессии. Транспозоны регулируют экспрессию генов in cis и in trans, а также опосредованно путем продукции малых РНК, влияющих на собственную активность мобильных генетических элементов, как путем изменения метилирования ДНК и модификацией гистонов, так и посттранскрипционно. Кроме того, транспозоны рассматриваются в качестве важных источников длинных некодирующих РНК, участвующих в регуляции дифференцировки клеток. Закономерное изменение активности транспозонов в онтогенезе тканеспецифично и стадиеспецифично и сопряжено с экспрессией специфических некодирующих РНК транспозонного происхождения, изменяющих активность генов при дифференцировке клеток. Предполагается, что видоспецифические особенности активации транспозонов при каждом последующем делении клеток проходят эволюционный отбор и используются в качестве ключевых регуляторов роста и развития организма. Начиная с первого деления зиготы, расположение и состав транспозонов в геноме влияют на их наследуемую активацию в каждом последующем клеточном делении. Это вызывает изменение экспрессии определенных генов и дифференцировку клеток, в результате чего развивается целостный многоклеточный организм.

 

 

Об авторах

Р. Н. Мустафин
Башкирский государственный университет, Уфа
Россия


Э. К. Хуснутдинова
Башкирский государственный университет, Уфа; Институт биохимии и генетики Уфимского научного центра РАН, Уфа
Россия


Список литературы

1. Baranov V.S., Kuznetsova T.V. Tsitogenetika embrionalnogo razvitiya cheloveka [Cytogenetics of Human Embryonic Development]. St.-Petersburg, 2007. (in Russian)

2. Belancio V.P., Roy-Engel A.M., Deininger P.L. All y’all need to know ‘bout retroelements in cancer. Semin. Cancer. Biol. 2010;20(4): 200-210.

3. Biryukova I., Ye T. Endogenous siRNA and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae. BMC Genomics. 2015;16:278.

4. Borchert G.M., Holton N.W., Williams J.D., Hernan W.L., Bishop I.P., Dembosky J.A., Elste J.E., Gregoire N.S., Kim J.A., Koehler W.W., Lengerich J.C., Medema A.A., Nguyen M.A., Ower G.D., Rarick M.A., Strong B.N., Tardi N.J., Tasker N.M., Wozniak D.J., Gat-to C., Larson E.D. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements. 2011;1(1):8-17.

5. Bush S.J., Chen L., Tovar-Corona J.M., Urrutia A.O. Alternative splicing and the evolution of phenotypic novelty. Philos. Trans. R. Soc. Lond. B. Bilol. Sci. 2017;372(1713):pii:20150474.

6. Christie M., Croft L.J., Carroll B.J. Intron splicing suppresses RNA silencing in Arabidopsis. Plant. J. 2011;68(1):159-167.

7. Coufal N.G., Garcia-Perez J.L., Peng G.E., Yeo G.W., Mu Y., Lovci M.T., Morell M., O’Shea K.S., Moran J.V., Gage F.H. L1 retrotransposition in human neural progenitor cells. Nature. 2009; 460(7259):1127-1231.

8. de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384.

9. Dimmeler S., Nicotera P. MicroRNAs in age-related diseases. EMBO Mol. Med. 2013;5(2):180-190.

10. Du Z., Yang C., Rothschild M.F., Ross J. Novel microRNA families expanded in the human genome. BMC Genomics. 2013;14:98-105.

11. Duan C.G., Wang X., Xie S., Pan L., Miki D., Tang K., Hsu C.C., Lei M., Zhong Y., Hou Y.J., Wang Z., Zhang Z., Mangrauthia S.K., Xu H., Zhang H., Dilkes B., Tao W.A., Zhu J.K. A pair of transpo-son-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 2017;27(2):226-240.

12. Dumesic P.A., Madhani H.D. The spliceosome as a transposon sensor. RNA Biol. 2013;10(11):1653-1660.

13. Dupressoir A., Lavialle C., Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33(9):663-671.

14. Elliott T.A., Gregory T.R. Do larger genomes contain more diverse transposable elements? BMC Evol. Biol. 2015;15(1):69-81.

15. Faulkner G.J. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 2011;585(11):1589-1594.

16. Feschotte C. The contribution of transposable elements to the evolution of regulatory networks. Nat. Rev. Genet. 2008;9(5):397-405.

17. Finatto T., de Oliveira A., Chaparro C., da Maia L.C., Farias D.R., Woyann L.G., Mistura C.C., Soares-Bresolin A.P., Llauro C., Panaud O., Picault N. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice. 2015; 8(13). DOI 10.1186/s12284-015-0045-6.

18. Garcia-Perez J.L., Marchetto M.C., Muotri A.R., Coufal N.G., Gage F.H., O’Shea K.S., Moran J.V. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 2007;16(13):1569-1577.

19. Gim J., Ha H., Ahn K., Kim D.S., Kim H.S. Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 2014;12(4):261-267.

20. Guo W., Zhang M.Q., Wu H. Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements. Sci. Rep. 2016;6:32207-32219.

21. Hadjiargyrou M., Delihas N. The Intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci. 2013;14(7):13307-13328.

22. Huff J.T., Zilberman D., Roy S.W. Mechanism for DNA transposons to generate introns on genomic scales. Nature. 2016;538(7626):533-536.

23. Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976.

24. Kiselev O.I. Endogenous retroviruses: structure and functions in the human genome. Voprosy virusologii = Problems of Virology. 2013; 1:102-115. (in Russian)

25. Kitkumthorn N., Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin. Epigenet. 2011;2:315-330.

26. Klawitter S., Fuchs N.V., Upton K.R., Munoz-Lopez M., Shukla R., Wang J., Garcia-Canadas M., Lopez-Ruiz C., Gerhardt D.J., Sebe A., Grabundaija I., Merkert S., Gerdes P., Pulgarin J.A., Bock A., Held U., Witthuhn A., Haase A., Sarkadi B., Lower J., Wolve tang E.J., Martin U., Ivics Z., Izsvak Z., Garcia-Perez J.L., Faulkner G.J., Schumann G.G. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat. Commun. 2016;7:10286-10301.

27. Kubiak M.R., Makalowska I. Protein-coding genes’ retrocopies and their functions. Viruses. 2017;9(4):pii:E80.

28. Lee K.H., Chiu S., Lee Y.K., Greenhalgh D.G., Cho K. Age-dependent and tissue-specific structural changes in the C57BL/6J mouse genome. Exp. Mol. Pathol. 2012;93(1):167-172.

29. Lee K.H., Yee L., Lim D., Greenhalgh D., Cho K. Temporal and spatial rearrangements of a repetitive element array on C57BL/6J mouse genome. Exp. Mol. Pathol. 2015;98(3):439-445.

30. Lee S., Stevens S.W. Spliceosomal intronogenesis. Proc. Natl. Acad.

31. Sci. USA. 2016;113(23):6514-6519.

32. Lei H., Vorechovsky I. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression. Mol. Cell. Biol. 2005;25(16):6912-6920.

33. Lescale C., Deriano L. The RAG recombinase: Beyond breaking. Mech. Ageing Dev. 2016;16:30263-30269. DOI 10.1016/j.mad.2016.11.003. Liew Y.J., Aranda M., Carr A., Baumgarten S., Zoccola D., Tambutte S., Allemand D., Micklem G., Voolstra C.R. Identification of microRNA in the coral Styphora pistillata. PLoS One. 2014;9(3):e91101.

34. Llave C., Kasschau K.D., Rector M.A., Carrington J.C. Endogenous and silencing-associated small RNAs in plants. 2002;14(7):1605-1619.

35. Lu D., Davis M.P., Abreu-Goodger C., Wang W., Campos L.S., Siede J., Vigorito E., Skarnes W.C., Dunham I., Enright A.J., Liu P. MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs. PLoS One. 2012;7(8):e40938.

36. Luco R.F., Allo M., Schor I.E., Kornblihtt A.R., Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell. 2011;144(1):16-26.

37. Macia A., Munoz-Lopez M., Cortes J.L., Hastings R.K., Morell S., Lucena-Aguilar G., Marchal J.A., Badge R.M., Garcia-Perez J.L. Epigenetic control of retrotransposons expression in human embryonic stem cells. Mol. Cell. Biol. 2011;31(2):300-316.

38. Marchetto M.C., Narvaiza I., Denli A.M., Benner C., Lazzarini T.A., Nathanson J.L., Paguola A.C., Desai K.N., Herai R.H., Weitz-man M.D., Yeo G.W., Muotri A.R., Gage F.H. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature. 2013; 503(7477):525-529.

39. Miousse I.R., Chalbot M.G., Lumen A., Ferguson A., Kavouras I.G., Koturbash I. Response of transposable elements to environmental stressors. Mutat. Res. Rev. Mutat. Res. 2015;765:19-39.

40. Moran Y., Praher D., Fredman D., Technau U. The evolution of mi-croRNA pathway protein components in Cnidaria. Mol. Biol. Evol. 2013;30(12):2541-2552.

41. Morita S., Horii T., Kimura M., Ochiya T., Tajima S., Hatada I. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int. J. Mol. Sci. 2013;14:14647-14658.

42. Muotri A.R., Chu V.T., Marchetto M.C., Deng W., Moran J.V., Gage F.H. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903-910.

43. Ong S., Lee W.H., Kodo K., Wu J.C. MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv. Drug Deliv. Rev. 2015;88:3-15.

44. Ostertag E.M., De Berardinis R.J., Goodier J.L., Zhang Y., Yang N., Gerton G.L., Kazazian H.H., Jr. A mouse model of human L1 retrotransposition. Nat. Genet. 2002;32(4):655-660.

45. Pastor T., Talotti G., Lewandowska M.A., Pagani F. An Alu-derived in-tronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res. 2009;37(21):7258-7267.

46. Patrushev L.I., Minkevich I.G. The problem of the eukaryotic genome size. Uspekhi biologicheskoi khimii = Advances of Biological Chemistry. 2007;47:293-370. (in Russian)

47. Piriyapongsa J., Marino-Ramirez L., Jordan I.K. Origin and evolution of human microRNAs from transposable elements. Genetics. 2007; 176(2):1323-1337.

48. Pizarro J.G., Cristofari G. Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Front. Cell. Dev. Biol. 2016;4:14-23.

49. Platt R.N., Vandeweqe M.W., Kern C., Schmidt C.J., Hoffmann F.G.,

50. Ray D.A. Large number of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol. Biol. Evol. 2014;31(6):1536-1545.

51. Prak E.T., Dodson A.W., Farkash E.A., Kazazian H.H. Jr. Tracking an embryonic L1 retrotransposition event. Proc. Natl. Acad. Sci. USA. 2003;100(4):1832-1837.

52. Qin S., Jin P., Zhou X., Chen L., Ma F. The role of transposable elements in the origin and evolution of microRNAs in human. PLoS One. 2015;10(6):e0131365.

53. Ramsay L., Marchetto M.C., Caron M., Chen S.H., Busche S., Kwan T.,

54. Pastinen T., Gage F.H., Bourgue G. Conserved expression of trans-poson-derived non-coding transcripts in primate stem cells. BMC Genomics. 2017;18(1):214-226.

55. Richardson S.R., Morell S., Faulkner G.J. L1 retrotransposons and somatic mosaicism in the brain. Annu. Rev. Genet. 2014;48:1-27.

56. Samantarrai D., Dash S., Chhetri B., Mallick B. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol. Cancer Res. 2013;11(4):315-328.

57. Shabalina S.A., Koonin E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008;23(10):578-587.

58. Shen S., Guo X., Yan H., Lu Y., Ji X., Li L., Liang T., Zhou D., Feng X.H., Zhao J.C., Yu J., Gong X.G., Zhang L., Zhao B. A miR-130a-YAP positive feedback loop promotes organ size and tumoro-genesis. Cell Res. 2015;25:997-1012.

59. Singh D.K., Rath P.C. Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat. RNA Biol. 2012;9(11):1380-1396.

60. Smalheiser N.R., Torvik V.I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 2005;21(6):322-326.

61. Tourasse N.J., Stabell F.B., Kolsto A.B. Survey of chimeric IStron elements in bacterial genomes: multiple molecular symbioses between group I intron ribozymes and DNA transposons. Nucleic Acids Res. 2014;42(20):12333-12351.

62. Ulrich A.K.C., Wahl M.C. Human MFAP1 is a cryptic ortholog of the Saccharomyces cerevisiae Spp381 splicing factor. BMC Evol. Biol. 2017;17:91-107.

63. Upadhyay U., Srivastava S., Khatri I., Nanda J.S., Subramanian S., Arora A., Singh J. Ablation of RNA interference and retrotransposons accompany acquisistion and evolution of transposases to hetero-chromatin protein CENPB. Mol. Biol. Cell. 2017;28(8):1132-1146.

64. Van den Hurk J.A., Meij I.C., Seleme M.C. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 2007;16(13):1587-1592.

65. Vanyushin B.F. Epigenetics today and tomorrow. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):805-832. (in Russian)

66. Wissing S., Munoz-Lopez M., Macia A., Yang Z., Montano M., Col-lins W., Garcia-Perez J.L., Moran J.V., Greene W.C. Reprogramming somatic cells into iPS cell activates LINE-1 retroelement mobility. Hum. Mol. Genet. 2012;21(1):208-218.

67. Xu C., Tian J., Mo B. siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell. 2013;4(9):656-663.

68. Yuan Z., Sun X., Liu H., Xie J. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes. PLoS One. 2011;6(3):e17666.

69. Zakrzewski F., Schmidt M., Van Lijsebettens M., Schmidt T. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.). Plant J. 2017; DOI 10.1111/tpj. 13526.

70. Zhang G., Esteve P., Chin H.G., Terragni J., Dai N., Correa Jr. I.R., Pradhan S. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation. Nucleic Acids Res. 2015;43(12):6112-6124.

71. Zhang H., Tao Z., Hong H., Chen Z., Wu C., Li X., Xiao J., Wang S. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat. Plants. 2016;2:16016-16023.

72. Zhou H., Kishima Y. Alternative plant host defense against transposon activities occurs at the post-translational stage. Plant Signal. Behav. 2017;e1318238. DOI 10.1080/15592324.2017.


Рецензия

Просмотров: 991


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)