Preview

Vavilov Journal of Genetics and Breeding

Advanced search

PATHOLOGICAL CHANGES IN MICE TREATED WITH CYCLOPHOSPHAMIDE AND EXOGENOUS DNA

Abstract

The synergic action of the cytostatic drug cyclophosphamide (CP) and fragmented exogenous DNA causes illness and death in mice (Dolgova et al., 2011–2013). The observed «delayed death» effect was most clearly pronounced when the DNA preparation was administered 18 to 30 hours after CP treatment. This time span is designated as «death window».

It was found that injections of exogenous DNA result in sustained increase in bone marrow cell (BMC) apoptosis, which occurs throughout the time of DNA administration (18–30 hours). Exogenous DNA, both allogeneic and belonging to various taxa induces BMCs apoptosis. Plasmid DNA has the greatest effect on apoptosis induction.

The analysis of reduction and restoration of BMC subpopulations as the mice progressed to death revealed a virtually complete loss of the 12–20-mkm fraction of the cell population (about 3–4 % vs. 35–40 % in the control), which corresponds to the maximum leukopenia on day 3 after CP treatment. However, the relative amount of CD34+ hematopoietic stem cells (HSCs) from day 15 and till the end of the observation constituted 1,2–1,4 %, which corresponds to the wild-type range. Comparison of BMC smears from the sternal bone marrow of the CP and CP+DNA groups of mice indicates that the BMC populations isolated from CP+DNA animals lack young committed lymphopoiesis progenitor cells. Moreover, the affected mice had immature blast cell types in their blood, which was never observed in healthy or CP-treated mice. Pathological and morphological analyses show that starting from posttreatment day 9, mice that received CP+DNA preparations displayed pronounced morphological changes in their lungs, liver, pancreas, central and peripheral immune system organs, and brain. Most of the pathological changes observed are consistent with severe inflammatory response. This suggestion is proven by structural equivalents of functional involution of lymphoid organs, such as thymus, spleen, and lymph nodes.

We speculate that the death of treated animals resulted from multiple organ dysfunctions caused by accidental involution of lymphoid organs and the systemic inflammatory response syndrome, both associated with injections of fragmented exogenous DNA into experimental animals within the «death window», which corresponds to the final step in the repair of the majority of CP-induced double-strand breaks.

About the Authors

E. V. Dolgova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


V. P. Nikolin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


N. A. Popova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


A. S. Proskurina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


K. E. Orishchenko
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


E. A. Alyamkina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


Ya. R. Efremov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


S. I. Baiborodin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


E. R. Chernykh
Institute of Clinical Immunology SB RAMS, Novosibirsk, Russia
Russian Federation


A. A. Ostanin
Institute of Clinical Immunology SB RAMS, Novosibirsk, Russia
Russian Federation


S. S. Bogachev
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


T. S. Gvozdeva
Novosibirsk State Medical University, Novosibirsk, Russia
Russian Federation


E. M. Malkova
Research Center for Virology and Biotechnology Vector, Koltsovo, Russia
Russian Federation


O. S. Taranov
Research Center for Virology and Biotechnology Vector, Koltsovo, Russia
Russian Federation


V. A. Rogachev
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


A. S. Panov
WellsStar College of Health & Human Services, Kennesaw State University Kennesaw, Georgia, USA
United States


S. N. Zagrebelnyi
Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


M. A. Shurdov
ООО Panagen, Gorno-Altaysk, Russia
Russian Federation


References

1. Афанасьева Ю.И., Кузнецова С.Л., Юрина Н.А. Гистология, цитология и эмбриология. М.: Медицина, 2004. 768 с.

2. Волкова О.В., Елецкий Ю.К. Основы гистологии и гистологической техники. М.: Медицина, 1971. 272 с.

3. Долгова Е.В., Николин В.П., Попова Н.А. и др. Интернализация экзогенной ДНК во внутренние компартменты клеток костного мозга мышей // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 2. С. 397–414.

4. Долгова Е.В., Прокопенко А.В., Николин В.П. и др. Характеристика изменения количества умеренных повторов в геноме клеток костного мозга экспериментальных мышей на фоне инъекции циклофосфана и экзогенной ДНК человека // Вавилов. журн. генет. и селекции. 2013. В печати.

5. Долгова Е.В., Проскурина А.С., Николин В.П. и др. Характеристика временных параметров проявления эффекта токсического действия инъекций экзогенной ДНК на фоне предобработки цитостатиком циклофосфаном // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 674–689.

6. Кругляков П.В., Соколова И.Б., Полынцев Д.Г. Стволовые клетки дифференцированных тканей взрослого организма // Цитология. 2008. Т. 50. № 7. С. 557–567.

7. Макгрегор Г., Варли Дж. Методы работы с хромосомами животных: Пер. с англ. М.: Мир, 1986. С. 31.

8. Мейл Д., Бростофф Дж., Рот Д.Б., Ройтт А. Иммунология: Пер. с англ. М.: Логосфера, 2007. 568 с.

9. Проскуряков С.Я., Гавай В.П., Коноплянников А.Г. Иммунология некроза и апоптоза // Биохимия. 2005. Т. 70. С. 1593–1605.

10. Рыкова Е.Ю., Лактионов П.П., Власов В.В. Активирующее влияние ДНК на иммунную систему // Усп. соврем. биологии. 2001. Т. 121. С. 160–171.

11. Andrews N.W. Membrane repair and immunological danger // EMBO Rep. 2005. V. 6. No. 9. P. 826–830.

12. Buckley R.H. Primary immunodefi ciency diseases due to defects in lymphocytes // N. Engl. J. Med. 2000. V. 343. No. 18. P. 1313–1324.

13. Coban C., Koyama S., Takeshita F. et al. Molecular and cellular mechanisms of DNA vaccines // Hum. Vaccin. 2008. V. 4. P. 453–456.

14. Cook R., Wu C.C., Kang Y.J., Han J. The role of the p38 pathway in adaptive immunity // Cell. Mol. Immunol. 2007. V. 4. No. 4. P. 253–259.

15. De Gregorio E., Rappuoli R. Inside sensors detecting outside pathogens // Nat. Immunol. 2004. V. 5. No. 11. P. 1099–1100.

16. Decker P., Wolburg H., Rammensee H.G. Nucleosomes induce lymphocyte necrosis // Eur. J. Immunol. 2003. V. 33. No. 7. P. 1978–1987.

17. Decker P., Singh-Jasuja H., Haager S. et al. Nucleosome, the main autoantigen in systemic lupus erythematosis, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on infl ammation // J. Immunol. 2005. V. 174. No. 6. P. 3326–3334.

18. Derbyshire M.K., Epstein L.H., Young C.S.H. et al. Nonhomologous recombination in human cells // Mol. Cell Biol. 1994. V. 14. No. 1. P. 156–169.

19. Fugmann S.D. RAG1 and RAG2 in V(D)J recombination and transposition // Immunol. Res. 2001. V. 23. No. 1. P. 23–39.

20. Harty J.T., Tvinnereim A.R., White D.W. CD8+ T cell effector mechanisms in resistance to infection // Annu. Rev. Immunol. 2000. V. 18. P. 275–308.

21. Ishii K.J., Akira S. Innate immune recognition of, and regulation by, DNA // Trends Immunol. 2006. V. 27. P. 525–532.

22. Kaufmann S.H., Schaible U.E. Antigen presentation and recognition in bacterial infections // Curr. Opin. Immunol. 2005. V. 17. No. 1. P. 79–87.

23. Kotnis A., Du L., Liu C. et al. Non-homologous end joining in class switch recombination: the beginning of the end // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009. V. 364. No. 1517. P. 653–665.

24. Krishan A. Rapid fl ow cytofl uorometric analysis of mammalian cell cycle by propidium iodide staining // J. Cell Biol. 1975. V. 66. No. 1. P. 188–193.

25. Lee S., Oshige M., Durant S.T. et al. The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair // Proc. Natl Acad. Sci. USA. 2005. V. 102. No. 50. P. 18075–18080.

26. Lees-Miller S.P., Meek K. Repair of DNA double strand breaks by non-homologous end joining // Biochimie. 2003. V. 85. No. 11. P. 1161–1173.

27. Lekstrom-Himes J.A., Gallin J.I. Immunodefi ciency diseases caused by defects in phagocytes // N. Engl. J. Med. 2000. V. 343. No. 23. P. 1703–1714.

28. Martin D.A., Elkon K.B. Intracellular mammalian DNA stimulates myeloid dendritic cells to produce type I interferons predominantly through a toll-like receptor 9-independent pathway // Arthritis Rheum. 2006. V. 54. P. 951–962.

29. Medzhitov R. Recognition of microorganisms and activation of the immune response // Nature. 2007. V. 449. No. 7164. P. 819–826.

30. Merrell D.S., Falkow S. Frontal and stealth attack strategies in microbial pathogenesis // Nature. 2004. V. 430. No. 6996. P. 250–256.

31. Monack D.M., Mueller A., Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system // Nat. Rev. Microbiol. 2004. V. 2. Nо. 9. P. 747–765.

32. Napirei M., Karsunky H., Zevnik B. et al. Features of systemic lupus erythematosis in Dnase1-defi cient mice // Nat. Genet. 2000. V. 25. No. 2. P. 177–181.

33. Orkin S.H., Zon L.I. Hematopoiesis: an evolving paradigm for stem cell biology // Cell. 2008. V. 132. No. 4. P. 631–644.

34. Ravetch J.V. A full complement of receptors in immune complex diseases // J. Clin. Invest. 2002. V. 110. No. 12. P. 1759–1761.

35. Rosen F.S., Cooper M.D., Wedgwood R.J. The primary immunodefi ciencies // N. Engl. J. Med. 1995. V. 333. No. 7. P. 431–440.

36. Rossi D.J., Jamieson C.H., Weissman I.L. Stems cells and the pathways to aging and cancer // Cell. 2008. V. 132. No. 4. P. 681–696.

37. Rouse B.T., Suvas S. Regulatory cells and infectious agents: detentes cordiale and contraire // J. Immunol. 2004. V. 173. No. 4. P. 2211–2215.

38. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning, a Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press, 1989.

39. Shirota H., Ishii K.J., Takakuwa H., Klinman D.M. Contribution of interferon-beta to the immune activation induced by double-stranded DNA // Immunology. 2006. V. 118. P. 302–310.

40. Silva J., Smith A. Capturing pluripotency // Cell. 2008. V. 132. Nо. 4. P. 532–536.

41. Takeshita F., Ishii K.J. Intracellular DNA sensors in immunity // Curr. Opin. Immunol. 2008. V. 20. P. 383–388.

42. Wang H., Rosidi B., Perrault R. et al. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining // Cancer Res. 2005. V. 65. No. 10. P. 4020–4030.

43. Warren J.S., Yabroff K.R., Remick D.G. et al. Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat // J. Clin. Invest. 1989. V. 84. No. 6. P. 1873–1882.

44. Whaley K. Complement and immune complex diseases // Complement in Health and Disease / Ed. K. Whaley. Lancaster: MTP Press Ltd, 1987.

45. Yu J., Thomson J.A. Pluripotent stem cell lines // Genes Dev. 2008. V. 22. No. 15. P. 1987–1997.


Review

Views: 958


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)