Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Manipulations with early mouse embryos for generation of genetically modified animals

https://doi.org/10.18699/VJ17.291

Abstract

Recently, genome-editing technologies have  become more efficient and accessible. The discovery of nucleases for directional genome editing (CRISPR/Cas9, TALEN, ZFNs) significantly accelerated and simplified the production of mice with targeted gene editing in the genome. Until last time, the CRISPR/Cas9 system noticeably simplified the preparation of knockout or transgenic mice. CRISPR/Cas9 technology was successfully applied for gene knockout and knock-in, generation of large deletions or directed insertions in targeted genome regions in embryonic stem cells (ESCs).When injected into blastocysts, such  modified ESCs are able to generate chimeras producing gametes with an identical genotype with ESC. Thus, it can identify animals with modified genomes. More recently, CRISPR/Cas9 technology was successfully applied to mouse zygotes and the birth of genetic modified mice was observed, i. e., the time required for generating genome-modified animals decreased significantly. The CRISPR/Cas9 system allows making gene knockout, large deletions or directed insertions into the target region of the genome by cytoplasm or pronuclear microinjection into zygotes. In addition, this is faster and simpler than similar work with mouse ESCs. Meanwhile, methods of manipulation with early embryos and their transplantation to surrogate mothers may be somewhat tricky. Therefore, it is important to use modern technologies for directional genome editing and perfect mastery in the embryological technics. In this article, we describe the protocols of microinjection into the pronucleus or cytoplasm of zygotes and injection of embryonic stem cells into the blastocyst cavity. We also describe embryological methods, such as superovulation, preparation of early stage  embryos,  surgical operation, production of foster mice. In addition, we describe the assembly and necessary components for the isoflurane anesthetic apparatus and isoflurane anesthesia.

About the Authors

A. N. Korablev
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


I. A. Serova
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


B. V. Skryabin
University of Muenster.
Germany

 Faculty of Medicine, Transgenic animal and genetic engineering Models (TRAM).

Muenster.



References

1. Boroviak K., Doe B., Banerjee R., Yang F., Bradley A. Chromosome engineering in zygotes with CRISPR/Cas9. Genesis. 2016;54(2): 78­85. DOI 10.1002/dvg.22915.

2. Bradley A., Evans M., Kaufman M.H., Robertson E. Formation of germ­line chimaeras from embryo­derived teratocarcinoma cell lines. Nature. 1984;309(5965):255­256.

3. Brinster R.L., Braun R.E., Lo D., Avarbock M.R., Oram F., Palmiter R.D. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc. Natl. Acad. Sci. USA. 1989;86(18):7087­7091.

4. Capecchi M. Altering the genome by homologous recombination. Science. 1989;244(4910):1288­1292.

5. Carbery I.D., Ji D., Harrington A., Brown V., Weinstein E.J., Liaw L., Cui X. Targeted genome modification in mice using zinc­finger nucleases. Genetics. 2010;186(2):451­459. DOI 10.1534/genetics.110.117002.

6. Chu V.T., Weber T., Graf R., Sommermann T., Petsch K., Sack U., Volchkov P., Rajewsky K., Kühn R. Efficient generation of Rosa26 knock­in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology. 2016;16(1):4. DOI 10.1186/s12896­016­0234­4.

7. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819823. DOI 10.1126/science.1231143.

8. Dupont C., Loos F., Kong­A­San J., Gribnau J. FGF treatment of host embryos injected with ES cells increases rates of chimaerism. Transgenic Res. 2017;26(2):237­246. DOI 10.1007/s11248­016­9997­6.

9. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154­156. DOI 10.1038/292154a0.

10. Gordon J.W., Scangos G.A., Plotkin D.J., Barbosa J.A., Ruddle F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA. 1980;77(12):7380­7384.

11. Kawase Y., Iwata T., Watanabe M., Kamada N., Ueda O., Suzuki H. Application of the piezo­micromanipulator for injection of embryonic stem cells into mouse blastocysts. Contemp. Top. Lab. Anim. Sci. 2001;40(2):31­34.

12. Kraft K., Geuer S., Will A.J., Chan W.L., Paliou C., Borschiwer M., Harabula I., Wittler L., Franke M., Ibrahim D.M., Kragesteen B.K., Spielmann M., Mundlos S., Lupiáñez D.G., Andrey G. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 2015;10(5):833­839. DOI 10.1016/j.celrep.2015.01.016.

13. Lin F.L., Sperle K., Sternberg N. Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc. Natl. Acad. Sci. USA. 1985;82(5):1391­1395.

14. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA­guided human genome engineering via Cas9. Science. 2013;339(6121):823­826. DOI 10.1126/science.1232033.

15. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 1981;78(12):7634­7638.

16. Raveux A., Vandormael­Pournin S., Cohen­Tannoudji M. Optimization of the production of knock­in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci. Rep. 2017;7:42661. DOI 10.1038/srep42661.

17. Smithies O., Gregg R.G., Boggs S.S., Koralewski M.A., Kucherlapati R.S. Insertion of DNA sequences into the human chromosomal beta­globin locus by homologous recombination. Nature. 1985; 317(6034):230­234.

18. Sung Y.H., Baek I.J., Kim D.H., Jeon J., Lee J., Lee K., Jeong D., Kim J.S., Lee H.W. Knockout mice created by TALEN­mediated gene targeting. Nat. Biotechnol. 2013;31(1):23­24. DOI 10.1038/nbt.2477.

19. Wang Z., Jaenisch R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES­tetraploid complementation. Dev. Biol. 2004;275(1):192­201. DOI 10.1016/j.ydbio.2004.06.026.

20. Yang H., Wang H., Jaenisch R. Generating genetically modified mice using CRISPR/Cas­mediated genome engineering. Nat. Protoc. 2014; 9(8):1956­1968. DOI 10.1038/nprot.2014.134.


Review

Views: 1122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)