Effect of Zbtb33 gene knockout and bacterial lipopolysaccharide on home cage behavior in mice
https://doi.org/10.18699/VJ17.297
Abstract
About the Authors
N. V. KhotskinRussian Federation
Novosibirsk.
I. E. Sorokin
Russian Federation
Novosibirsk.
E. A. Kulikova
Russian Federation
Novosibirsk.
A. V. Kulikov
Russian Federation
Novosibirsk.
References
1. Bali P., Im H.I., Kenny P.J. Methylation, memory and addiction. Epigenetics. 2011;6:671674.
2. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:621.
3. Bogdanovic O., Veenstra G.J. DNA methylation and methylCpG binding proteins: developmental requirements and functions. Chromosoma. 2009;118:549565.
4. Dantzer R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 2009;29:247264.
5. Della Ragione F., Tiunova A., Vacca M., Strazzullo M., González E., Armstrong J., Valero R., Campanile C., Pineda M., Hulten M., Monros E., D’Esposito M., Prokhortchouk E. The Xlinked methyl binding protein gene Kaiso is highly expressed in brain but is not mutated in Rett syndrome patients. Gene. 2006;373:8389.
6. Filion G.J., Zhenilo S., Salozhin S., Yamada D., Prokhortchouk E., Defossez P.A. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 2006;26:169181.
7. Jiang Y., Matevossian A., Guo Y., Akbarian S. Setdb1mediated histone H3K9 hypermethylation in neurons worsens the neurological phenotype of Mecp2deficient mice. Neuropharmacology. 2011;60: 10881097.
8. Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 2006;31:8997.
9. Kondo M., Gray L.J., Pelka G.J., Christodoulou J., Tam P.P.L., Hannan A.J. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome – Mecp2 gene dosage effects and BDNF expression. Eur. J. Neurosci. 2008;27:33423350. DOI 10.1111/j.14609568.2008.06305.x.
10. Korostina V.S., Kulikov A.V. Behavioral phenotyping of Kaisodeficient mice. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(4):399403. DOI 10.18699/VJ15.051. (in Russian)
11. Kulikov A.V., Korostina V.S., Kulikova E.A., Fursenko D.V., Akulov A.E., Moshkin M.P., Prokhortchouk E.B. Knockout Zbtb33 gene results in an increased locomotion, exploration and prepulse inhibition in mice. Behav. Brain Res. 2016;297:7683.
12. Lubin F.D., Gupta S., Parrish R.R., Grissom N.M., Davis R.L. Epigenetic mechanisms: critical contributors to longterm memory formation. Neuroscientist. 2011;17:616632.
13. Matt S.M., Lawson M.A., Johnson R.W. Aging and peripheral lipopolysaccharide can modulate epigenetic regulators and decrease IL1β promoter DNA methylation in microglia. Neurobiol. Aging. 2016; 47:19.
14. Prokhortchouk A., Sansom O., Selfridge J., Caballero I.M., Salozhin S., Aithozhina D., Cerchietti L., Meng F.G., Augenlicht L.H., Mariadason J.M., Hendrich B., Melnick A., Prokhortchouk E., Clarke A., Bird A. Kaisodeficient mice show resistance to intestinal cancer. Mol. Cell. Biol. 2006;26:199208.
15. Shumskaya V.S., Zhigalova N.A., Prokhorchouk A.V., Prokhorchouk E.B. Distribution of Kaiso protein in mouse tissues. Histochem. Cell Biol. 2015;143(1):2943.
16. Wade P.A. Methyl CpGbinding proteins and transcriptional repression. BioEssays. 2001;23:11311137.