Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Сравнение преимплантационного развития эмбрионов крыс линий OXYS и WAG в условиях in vivo и in vitro

https://doi.org/10.18699/VJ17.300

Аннотация

Линия крыс OXYS является моделью преждевременного старения. Ранее были проведены многочисленные исследования, направленные на изучение особенностей поведения и физиологии крыс этой линии в период постнатальной жизни, однако преимплантационное развитие эмбрионов линии OXYS до сих пор не изучено. В настоящей работе исследовано преимплантационное развитие эмбрионов крыс линии OXYS как в условиях in vivo, так и при культивировании in vitro. В качестве контроля для всех экспериментов служила линия крыс WAG. Для исследования преимплантационного развития in vivo у крыс линий OXYS и WAG на 5-й день беременности из репродуктивных путей извлекали эмбрионы. У эмбрио нов оценивали стадию развития и долю зародышей, достигших стадии бластоцисты, подсчитывали число клеток, входящих в состав бластоцисты. При изучении особенностей культивирования в условиях in vitro эмбрионы двух линий крыс извлекали из репродуктивных путей на сутки раньше, на 4-й день беременности, на стадии дробления эмбрионов. Такие эмбрионы, состоящие всего из восьми бластомеров на данной стадии развития, культивировали in vitro в течение 48 ч в среде P1 в присутствии ростового фактора IGF-1 (200 нг/мл) либо без него. После культивирования у эмбрионов крыс так же, как и в эксперименте по оценке развития эмбрионов in vivo, подсчитывали долю зародышей, достигших стадии бластоцисты, и оценивали число клеток, представленных в бластоцисте. В статье показано, что на 5-е сутки развития в репродуктивных путях самок крыс линии OXYS представлено большее число эмбрионов по сравнению с линией WAG. Развившиеся в условиях in vivo бластоцисты крыс линии OXYS на 5-е сутки содер жат меньшее число клеток по сравнению с эмбрионами линии WAG. Культивирование ранних эмбрионов крыс линии OXYS и WAG в среде P1 нивелирует различия в скорости развития между этими линиями, а присутствие IGF-1 в культуральной среде не оказывает ни положительного, ни отрицательного эффекта на их развитие в условиях in vitro

Об авторах

В. В. Кожевникова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет.
Россия
Новосибирск.


Т. Н. Игонина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Е. Ю. Брусенцев
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


В. И. Мокроусова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет.
Россия
Новосибирск.


Е. А. Кизилова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет.
Россия
Новосибирск.


И. Н. Рожкова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


В. А.  Напримеров
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский государственный аграрный университет.
Россия
Новосибирск.


С. Я. Амстиславский
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Список литературы

1. Berryman D.E., Christiansen J.S., Johannsson G., Thorner M.O., Kop-chick J.J. Role of the GH/IGF-1 axis in lifespan and healthspan: Lessons from animal models. Growth Horm. IGF Res. 2008;18(6):455-471. DOI 10.1016/j.ghir.2008.05.005.

2. Brusentsev E.Yu., Igonina T.N., Amstislavsky S.Ya. Traditional and modern approaches to culture of preimplantation mammalian embryos in vitro. Ontogenez = Ontogenesis (Moscow). 2014;45(2):73-88. (in Russian)

3. Brusentsev E.Yu., Igonina T.N., Rozhkova I.N., Ragaeva D.S., Am-stislavsky S.Ya. Effects of growth factors during in vitro culture of mouse and rat embryos. Vavilovskii Zhurnal Genetiki i Selekt-sii = Vavilov Journal of Genetics and Breeding. 2015;19(4):372-377 DOI 10.18699/VJ15.046. (in Russian)

4. Green C.J., Day M.L. Insulin-like growth factor 1 acts as an autocrine factor to improve early embryogenesis in vitro. Int. J. Dev. Biol. 2013;57(11-12):837-44. DOI 10.1387/ijdb.130044md. PubMed PMID: 24623075.

5. Harlow G.M., Quinn P. Development of preimplantation mouse embryos in vivo and in vitro. Aust. J. Biol. Sci. 1982;35(2):187-193. Harvey M.B., Kaye P.L. Insulin-like growth factor-1 stimulates growth of mouse preimplantation embryos in vitro. Mol. Reprod. Dev. 1992; 31(3):195-199.

6. Heyner S., Shi C.Z., Garside W.T., Smith R.M. Functions of the IGFs in early mammalian development. Mol. Reprod. Dev. 1993;35(4): 421-425.

7. Ho Y., Wigglesworth K., Eppig J.J., Schultz R.M. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 1995;41: 232-238.

8. Holzenberger M., Dupont J., Ducos B., Leneuve P., Geloen A., Even P.C., Cervera P., Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421(6919):182-187.

9. Horii T., Yanagisawa E., Kimura M., Morita S., Hatada I. Epigenetic differences between embryonic stem cells generated from blastocysts developed in vitro and in vivo. Cell Reprogram. 2010;12(5):551-563. DOI 10.1089/cell.2009.0104.

10. Igonina T.N., Ragaeva D.S., Tikhonova M.A., Petrova O.M., Her-beck Yu.E., Rozhkova I.N., Amstislavskaya T.G., Amstislavsky S. Ya. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res. 2017 (in press).

11. Kapur S., Tamada H., Dey S.K., Andrews G.K. Expression of insulinlike growth factor-I (IGF-I) and its receptor in the peri-implantation mouse uterus, and cell-specific regulation of IGF-I gene expression by estradiol and progesterone. Biol. Reprod. 1992;46(2):208-219.

12. Kenyon C. A conserved regulatory system for aging. Cell. 2001;105(2): 165-168.

13. Khatir H., Anouassi A., Tibary A. In vitro and in vivo developmental competence of dromedary (Camelus dromedarius) embryos produced in vitro using two culture systems (mKSOMaa and oviductal cells). Reprod. Domest. Anim. 2005;40(3):245-249.

14. Kito S., Kaneko Y., Yano H., Tateno S., Ohta Y. Developmental responses of 2-cell embryos to oxygen tension and bovine serum albumin in Wistar rats. Exp. Anim. 2008;57(2):123-128.

15. Krisher R.L. In vivo and in vitro environmental effects on mammalian oocyte quality. Annu. Rev. Anim. Biosci. 2013;1:393-417. DOI 10.1146/annurev-animal-031412-103647.

16. Lighten A.D., Moore G.E., Winston R.M., Hardy K. Routine addition of human insulin-like growth factor-I ligand could benefit clinical in vitro fertilization culture. Hum. Reprod. 1998;13(11):3144-3150.

17. Lin T.-C., Yen J.-M., Gong K.-B., Hsu T.-T., Chen L.-R. IGF-1/ IGFBP-1 increases blastocyst formation and total blastocyst cell number in mouse embryo culture and facilitates the establishment of a stem-cell line. BMC Cell Biol. 2003;4:14. DOI 10.1186/1471-21214-14.

18. Manabe Y., Tochigi M., Moriwaki A., Takeuchi S., Takahashi S. Insulin-like growth factor 1 mRNA expression in the uterus of strepto-zotocin-treated diabetic mice. J. Reprod. Dev. 2013;59(4):398-404. DOI 10.1262/jrd.2012-169.

19. Miyoshi K., Kono T., Niwa K. Stage-dependent development of rat 1-cell embryos in a chemically defined medium after fertilization in vivo and in vitro. Biol. Reprod. 1997;56(1):180-185.

20. Popova E., Bader M., Krivokharchenko A. Effect of culture conditions on viability of mouse and rat embryos developed in vitro. Genes. 2011;2(2):332-344. DOI 10.3390/genes2020332.

21. Renzini M., Dal Canto M., Coticchio G., Comi R., Brigante C., Ca-liari I., Brambillasca F., Merola M., Lain M., Turchi D. Clinical efficiency and perinatal outcome of ART cycles following embryo culture in the presence of GM-CSF in patients with miscarriage or early pregnancy loss history. Hum. Reprod. 2013;28(1):160-202.

22. Robertson S.A. GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev. 2007;18(3-4):287-298. Roth T.L., Swanson W.F., Wildt D.E. Developmental competence of domestic cat embryos fertilized in vivo versus in vitro. Biol. Re-prod. 1994;51(3):441-451.

23. Schiffner J., Spielmann H. Fluorometric assay of the protein content of mouse and rat embryos during preimplantation development. J. Reprod. Fertil. 1976;47(1):145-147.

24. Schultz G.A., Heyner S. Growth factors in preimplantation mammalian embryos. Oxf. Rev. Reprod. Biol. 1993;15:43-81.

25. Scott L., Whittingham D.G. Influence of genetic background and media components on the development of mouse embryos in vitro. Mol. Reprod. Dev. 1996;3(3):336-346.

26. Summers M.C., Biggers J.D. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum. Reprod. Update. 2003;9(6):557-582.

27. Thongkittidilok C., Tharasanit T., Sananmuang T. Insulin-like growth factor-1 (IGF-1) enhances developmental competence of cat embryos cultured singly by modulating the expression of its receptor (IGF-1R) and reducing developmental block. Growth Horm. IGF Res. 2014;24(2-3):76-82.

28. Velazquez M.A., Hermann D., Kues W.A., Niemann H. Increased apoptosis in bovine blastocysts exposed to high levels of IGF1 is not associated with downregulation of the IGF1 receptor. Reproduction. 2011:41(1):91-103. DOI 10.1530/REP-10-0336.

29. Xia P., Han V.K., Viuff D., Armstrong D.T., Watson A.J. Expression of insulin-like growth factors in two bovine oviductal cultures employed for embryo co-culture. J. Endocrinol. 1996;149:41-53.

30. Zhang X., Kidder G.M., Watson A.J., Schultz G.A., Armstrong D.T. Possible roles of insulin and insulin-like growth factors in rat preimplantation development: investigation of gene expression by reverse transcription-polymerase chain reaction. J. Reprod. Fertil. 1994; 100(2):375-380.


Рецензия

Просмотров: 718


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)