Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Нейроэндокринная стресс-реакция насекомых: история развития концепции

https://doi.org/10.18699/VJ17.302

Полный текст:

Аннотация

Нейроэндокринная стресс-реакция является эффективным способом защиты организмов от неблагоприятных воздействий различной природы. Эта реакция универсальна и возникает в ответ на стимулы, непривычные для жизни и обитания не только данного вида организмов, но и отдельной популяции. В обзоре рассматривается последовательная смена теоретических концепций, подходов и методов исследования в этой научной области: от становления концепции стресса Г. Селье до наших дней. В 1982 г. Г. Селье определил стресс как совокупность стереотипных филогенетических запрограммированных реакций организма, которые вызыва ются любыми сильными, сверхсильными, экстремальными воздей ствиями и сопровождаются перестройкой адаптивных сил орга низ ма. Агент, вызывающий стресс, был назван стрессором. В динамике комплекса неспецифических защитно-приспособительных реакций в ответ на стрессовое воздействие, направленных на создание устойчивости (резистентности) организма к любо му фактору, закономерно прослеживаются три стадии («триада Селье»): 1) реакция тревоги, 2) стадия резистентности, 3) стадия истощения. Длительность и выраженность каждой из них могут варьировать в зависимости от природы и силы стрессорного агента, вида животного и физиологического состояния организма. Отсутствие гипоталамо-гипофизарно-адренокортикальной системы у насекомых считалось доказательством невозможности развития у них стресс-реакции по типу теплокровных животных. Тем не менее с начала 1980-х годов получено достаточно доказательств развития реакции стресса у насекомых, что подчеркивает консервативность стресс-реакции у млекопитающих и насекомых. Cходство в нейрохимических и физиологических изменениях у беспозвоночных и позвоночных в ответ на стрессорное воздействие свидетельствует о том, что реакция на стрессор – это совокупность древних, сохраненных в эволюции механизмов. Насекомые предоставляют уникальные возможности для экспериментов, которые могут помочь понять основные механизмы стрессовых реакций. У личинок насекомых механизм стресс-реакции изучен детально. В этом веке основные усилия исследователей направлены на изучение механизмов стресс-реакции у имаго насекомых и генетического контроля отдельных ее звеньев. Изучение стресс- реакции у насекомых важно и в теоретическом плане – оно демонстрирует конвергентность путей эволюции адаптивных преобразований у таких далеко отстоящих друг от друга таксонов, как насекомые и млекопитающие, и в практическом – закономерности механизма этой реакции можно использовать при моделировании наследственных или приобретенных заболеваний человека, разработке методов разведения хозяйственно ценных насекомых и способов борьбы с насекомыми-вредителями.

Об авторах

М. А. Еремина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Н. Е. Грунтенко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Список литературы

1. Adamo S.A. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Horm. Behav. 2012;62:324-330.

2. Adamo S.A. The stress response and immune system share, borrow, and reconfigure their physiological network elements: evidence from the insects. Horm. Behav. 2017a:88:25-30. DOI 10.1016/j.yhbeh.2016.10.003.

3. Adamo S.A. Stress responses sculpt the insect immune system, allowing for better defense in an ever - changing world. Dev. Comp. Immunol. 2017b;66:24-32. DOI 10.1016/j.dci.2016.06.005.

4. Adamo S.A. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior. Integr. Comp. Biol. 2014;54(3):419-426. DOI 10.1093/icb/icu005.

5. Adamo S.A., Easy R., Kovalko I., MacDonald J., McKeen A., Swan-burg T., Turnbull K.F., Reeve C. Predator stress-induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? J. Exp. Biol. 2017;220:868-875. DOI 10.1242/jeb.153320.

6. Adamo S.A., Kovalko I., Mosher B. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response. J. Exp. Biol. 2013;216:4608-4614.

7. Ahmad S. Oxidative stress from environmental pollutants. Arch. Insect Biochem. Physiol. 1995;29:135-157. DOI 10.1002/arch.940290205.

8. Apchel V.Ya., Tsygan V.N. Stress i stressoustoychivost cheloveka [Stress and stress resistance in a human]. Saint-Petersburg: VMA Publ., 1999. (in Russian)

9. Bednarova A., Krishnan N., Cheng I.-C., Vecera J., Lee H.-J., Ko-drik D. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol. 2013;38:54-62. DOI 10.1111/phen.12008.

10. Bendena W.G., Donly B.C., Tobe S.S. Allatostatins: A growing family of neuropeptides with structural and functional diversity. Ann. N. Y. Acad. Sci. 1999;897:311-329.

11. Ben'kovskaya G.V., Leontyeva T.L., Udalov M.B. Resistance of the Colorado beetle to insecticides in the Southern Ural. Agrokhimiya = Agrochemistry. 2008;8:55-59. (in Russian)

12. Ben'kovskaya G.V., Nikolenko A.G., Saltykova E.S., Ishmurato-va N.M., Kharisov R.Ya., Ishmuratov G.Yu. The adaptogenic effect of Biosil on the honey bee and house fly. Agrokhimiya = Agrochemistry. 2005;3:74-78. (in Russian)

13. Ben'kovskaya G.V., Poskryakov A.V., Nikolenko A.G. Effect of me-thoprene on the tolerance of heat shock in the ontogenesis of the Colorado beetle. Agrokhimiya = Agrochemistry. 2000;12:58-61. (in Russian)

14. Ben'kovskaya G.V., Sokolyanskaya M.P. Sensitivity to thermal stress in adult house flies of laboratory strains selected by insecticides and abiotic factors. Agrokhimiya = Agrochemistry. 2008;3:52-56. (in Russian)

15. Ben'kovskaya G.V., Udalov M.B., Poskryakov A.V., Nikolenko A.G. Phenogenetic polymorphism of the Colorado beetle Leptinotarsa decemlineata Say and its sensitivity to insecticides in Bashkiria. Agrokhimiya = Agrochemistry. 2004;12:23-28. (in Russian)

16. Bi J.L., Felton G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995;21:1511-1530. DOI 10.1007/BF02035149.

17. Bogus M.I., Cymborowski B. Chilled Galleria mellonella larvae: Mechanism of supernumerary moulting. Physiol. Entomol. 1981;6: 343-348.

18. Bogus M.I., Wisniewski J.R., Cymborowski B. Effect of injury to the neuroendocrine system of last instar larvae of Galleria mellonella. J. Insect Physiol. 1986;32:1011-1018.

19. Cannon W.B. The Wisdom of the Body. N. Y.: W.W. Norton, 1932. Chentsova N.A., Alekseev A.A., Gruntenko N.E., Rauschenbach I.Yu. Effect of octopamine on the activity of ecdysone monooxygenase in Drosophila. Doklady AN = Proceedings of the Academy of Sciences. 2007;415:559-561. (in Russian)

20. Chernysh S.I. Response of the neuroendocrine system on the damaging effects. Trudy Vsesoyuznogo entomologicheskogo obshchestva = Proceedings of the Russian Entomological Society. 1983;64:118-127. (in Russian)

21. Chernysh S.I. Neuroendocrine system in insect stress. Eds. J. Ivanovic, M. Jankovic-Hladni. Hormones and Metabolism in Insect Stress. Boca Raton: CRC Press, 1991;69-98.

22. Chertkova E.A. A change in the dopamine level in the hemolymph of larvae of the cabbage scoop Mamestra brassicae (Lepidoptera: Noctuidae) and the Colorado beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) in various diseases. New knowledge about parasites. Materialy V Mezhregionalnoy konferentsii “Parazi-tologicheskie issledovaniya v Sibiri i na Dalnem Vostoke” [Proceedings of the V Transregional Conference “Parasitological Studies in Siberia and the Far East”]. Novosibirsk, 2015;131-132. (in Russian)

23. Cymborowski B. Effect of cooling stress on endocrine events in Galleria mellonella. Endocrinological frontiers in physiological insect ecology. Wroclaw. 1988;1:203-212.

24. Cymborowski B., Bogus M.I. Juvenilizing effect of cooling on Galleria mellonella. J. Insect Physiol. 1976;22:669-672.

25. Cymborowski B., Bogus M., Beckage N.E., Williams C.M., Riddi-ford L.M. Juvenile hormone titrres and metabolism during starvation-induced supernumerary larval moulting of the tabacco horn-worm, Manduca sexta L. J. Insect Physiol. 1982;28:129-135.

26. Davenpont A.K., Evans P.D. Stress-indeced changed in octopamine levels of insect hemolymph. Insect Biochem. 1984;14:135-150.

27. Evans P.D. Octopamine. Eds. G.A. Kerkut, L.I. Gilbert. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1985;11:499-538.

28. Even N., Devaud J.M., Barron A.B. General stress responses in the honey bee. Insects. 2012;3:1271-1298. DOI 10.3390/insects3041271.

29. Gayfullina L.R., Saltykova E.S., Ben'kovskaya G.V., Nikolenko A.G. Immune responses of larvae and imagoes of the Colorado beetle (Leptinotarsa decemlineata Say) to a biological potato protectant. Agrokhimiya = Agrochemistry. 2004;9:1-7. (in Russian)

30. Gorizontov P.D. Rezistentnost i porazhenie. Voprosy obshchey patolo-gii [The resistance and damage. Issues of general pathology]. Pa-tologicheskaya fiziologiya ekstremalnykh sostoyaniy [Pathological physiology of extreme conditions]. Moscow: Meditsina Publ., 1973. (in Russian)

31. Gruntenko N.E. Stress i razmnozhenie nasekomykh: gormonalnyy kon-trol [Stress and Reproduction of Insects: Hormonal Control]. Novosibirsk; Moscow: KMK Publ., 2008. (in Russian)

32. Gruntenko N.E., Bogomolova E.V., Adonyeva N.V., Karpova E.K., Menshanov P.N., Alekseev A.A., Romanova I.V., Li S., Rauschen-bach I.Y. Decrease in juvenile hormone level as a result of genetic ablation of the corpus allatum cells affects the synthesis and metabolism of stress related hormones in Drosophila. J. Insect Physiol. 2012;58:49-55.

33. Gruntenko N.E., Bownes M., Terashima J., Suchanova M.Zh., Rau-schenbach I.Yu. Heat stress affects oogenesis differently in wild type Drosophila virilis and a mutant with altered juvenile hormone and 20-hydroxyecdysone levels. Insect Mol. Biol. 2003a;12:393-404.

34. Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Bownes M., Segal D., Adonyeva N.V., Rauschenbach I.Yu. Stress response in a juvenile hormone deficient Drosophila melanogaster mutant apter-ous56f. Insect Mol. Biol. 2003b;12:353-363.

35. Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Karpova E.K., Glazko G.V., Monastirioti M., Rauschenbach I.Yu. The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to heat stress. Arch. Insect Biochem. Physiol. 2004;55:55-67.

36. Gruntenko N.E., Karpova E.K., Adonyeva N.V., Chentsova N.A., Fad-deeva N.V., Alekseev A.A., Rauschenbach I.Yu. Juvenile hormone, 20-hydroxyecdisone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. J. Insect Physiol. 2005a;51:417-425.

37. Gruntenko N.E., Karpova E.K., Alekseev A.A., Chentsova N.A., Sa-prykina Z.V., Bownes M., Rauschenbach I.Yu. Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. J. Insect Physiol. 2005b;51:959-968.

38. Gruntenko N.E., Rauschenbach I.Yu. Interplay of juvenile hormone, 20-hydroxyecdisone and biogenic amines under normal and stress conditions and its effect on reproduction. J. Insect. Physiol. 2008; 54:902-908.

39. Gruntenko N.E., Rauschenbach I.Yu. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A minireview. Gen. Comp. Endocrinol. 2017. DOI 10.1016/j.ygcen.2017. 05.019.

40. Gruntenko N.E., Wen D., Karpova E.K., Adonyeva N.V., Liu Y., He Q., Faddeeva N.V., Fomin A.S., Li S., Rauschenbach I.Yu. Altered ju--venile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 2010;40: 891-897.

41. Gruntenko N.E., Wilson T.G., Monastirioti M., Rauschenbach I.Yu. Stress-reactivity and juvenile hormone degradation in Drosophila melanogaster strains having stress-related mutations. Insect Bio-chem. Mol. Biol. 2000;30:775-783.

42. Harris J.W., Woodring J. Effects of stress age, season and source colony on the level of octopamine, dopamine and serotonin in the honey bee (Apis melifera L.) brain. J. Insect Physiol. 1992;38:29-35.

43. Hirashima A., Eto M. Chemical-induced changed in the biogenic amine levels of Periplaneta americana L. Pestic. Biochem. Physiol. 1993;46:131-140.

44. Hirashima A., Nagano T., Eto M. Effect of various insecticides on the larval growth and biogenic amine levels of Tribolium castaneum Herbst. Comp. Biochem. Physiol. 1994;107C:393-398.

45. Hirashima A., Rauschenbach I.Yu., Sukhanova M.Jh. Ecdisteroids in stress responsive and nonresponsive Drosophila virilis lines under stress conditions. Biosci. Biotech. Biochem. 2000;64:2657-2662.

46. Holzenberger M., Dupont J., Ducos B., Leneuve P., Geloen A., Even P.C., Cervera P., Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;42: 182-187.

47. Ivanovic J., Jankovic-Hladni M., Milanovic M.P. Possible role of neurosecretory cells, Type A in response of Morimus funereus larvae to the effect of temperature. J. Therm. Biol. 1975;1:53-57.

48. Ivanovic J., Jankovic-Hladni M., Stanic V., Milanovic M.P., Nenado-vic V. Possible role of neurohormones in the process of acclimatization and acclimation in Morimus funereus larvae (Insecta). I. Changes in the neuroendocrine system and target organs (midgut, hemolymph) during the annual cycle. Comp. Biochem. Physiol. 1979;80A:107-112.

49. Ivanovic J., Jankovic-Hladni M., Stanic V., Kalafatc D. Differences in the sensitivity of protocerebral neurosecretory cells arising from the effect of different factors in Morimus funereus larvae. Comp. Bio-chem. Physiol. 1985;80A:107-113.

50. Ivanovic J., Jankovic-Hladni M., Stanic V., Nenadovic V., Frusic M. The role of neurosecretion and metabolism in development of an oli-gophagous feeding habit in Morimus funereus larvae (Col., Ceram-bycidae). Comp. Biochem. Physiol. 1989;74:189-197.

51. James V. Psikhologiya [Psychology]. Saint-Petersburg, 1905. (in Russian)

52. Jankovic-Hladni M. Hormones and metabolism in insect stress (Historical survey). Eds. J. Ivanovic, M.I. Jankovic-Hladni. Hormones and Metabolism in Insect Stress. Boca Raton: CRS Press, 1991;5-27.

53. Jankovic-Hladni M., Chen C.A., Ivanovic J., Djordjevic S., Stanic V., Peric Mataruga V., Frusic M. Effects of diet and temperature on Morimus funereus larvae hemolymph cation concentrations. Arch. Insect Biochem. Physiol. 1992;20:205-214.

54. Jankovic-Hladni M., Ivanovic J., Nenadovic V., Stanic V. The selective response of the protocerebral neurosecretory cells of the Ceram-byx cerdo larvae to the effect of different factors. Comp. Biochem. Physiol. 1983;74A:131-136.

55. Johnson E.C., White M.P. Stressed-Out Insects: Hormonal Actions and Behavioral Modifications. Eds. D.W. Pfaff, A.P. Arnold, S.E. Fahr-bach, A.M. Etgen, R.T. Rubin. Hormones, Brain and Behavior. San Diego: Academic Press, 2009;1069-1096.

56. Kitaev-Smyk L.A. Psikhologiya stressa [Psychology of Stress]. Moscow: Nauka Publ., 1983. (in Russian)

57. Kodrik D., Bednarova A., Zemanova M., Krishnan N. Hormonal regulation of response to oxidative stress in insects - an update. Int. Mol. Sci. 2015;16:25788-25816.

58. Kositskiy G.I., Smirnov V.M. Nervnaya sistema i “stress” (o printsipe dominanty v patologii) [The Nervous System and ‘Stress' (The Principle of Dominance in Pathology)]. Moscow: Nauka Publ., 1970. (in Russian)

59. Kramer S.J., Toschi A., Miller C.A., Kataoka H., Quistad G.B., Li J.P., Carney R.L., Schooley D.A. Identification of an allastatin from thetabacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 1991;88:9458-9462.

60. Krishnan N., Kodrik D. Endocrine control of oxidative stress in insects. Eds T. Farooqui, A.A. Farooqui. Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling. New Jersey: Wiley-Blackwell, 2012;261-270.

61. Lalouette L., Williams C.M., Hervant F., Sinclair B.J., Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. 2011;158:229-234. DOI 10.1016/j.cbpa.2010.11.007.

62. Lawrence P.O. Hormonal interactions between parasitoids and hosts: adaptation to stress? Endocrinological Frontiers in Physiological Insect Ecology. Wroclaw: Tech. Univ. Press, 1988;423-435.

63. Lekovic S., Lazarevic J., Nenadovic V., Ivanovic J. The effect of heat stress on the activity of A1 and A2 neurosecretory neurons of Mori-mus funereus (Coleoptera: Cerambycidae) larvae. Eur. J. Entomol. 2001;98:13-18.

64. McCaleb D.C., Kumaran A.K. Control of juvenile hormone esterase activity in Galleria mellonella larvae. J. Insect Physiol. 1980;26: 171-177.

65. Meerson F.Z. Adaptatsiya, stress i profilaktika [Adaptation, Stress and Prevention]. Moscow: Nauka Publ., 1981. (in Russian)

66. Meng J.-Y., Zhang C.-Y., Zhu F., Wang X.-P., Lei C.-L. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009;55:588-592. DOI 10.1016/j.jinsphys.2009.03.003.

67. Mobius P., Penzlin H. Stress-induced release of octopamine in the American cockroach Periplaneta americana L. Acta Biol. Hung. 1993;44:45-50.

68. Mrdakovic M., Ilijin L., Vlahovic M., Jankovic-Tomanic M., Peric Mataruga V., Lazarevic J., Nenadovic V. The effects of different constant temperatures on the activity of corpora allata in Morimus funereus (Coleoptera: Cerambycidae) larvae. Arch. Biol. Sci. 2003; 55:21-22.

69. Neckameyer W.S., Weinstein J.S. Stress affects dopaminergic signaling pathways in Drosophila melanogaster. Stress. 2005;8:117-131.

70. O'Kasha A.Y.K. Effect of sub-lethal high temperature on insect, Rhod-nius prolixus (Stal). I. Induction of delayed moutling and defects. J. Exp. Biol. 1968;48:455-463.

71. Peric-Mataruga V., Lazarevic J., Nenadovic V. A possible role for the dorsolateral protocerebral neurosecretory neurons in the trophic adaptations of Lymantria dispar (Lepidoptera : Lymantriidae). Eur. J. Entomol. 2001;98:257-264.

72. Pogodaev K.I. K biologicheskim osnovam “stressa” i “adaptatsionnogo sindroma”. [Biological foundations of “stress” and “the adaptation syndrome”]. Aktualnye problemy stressa [Topical Issues in Stress]. Chisinau: Shtiintsa Publ., 1976. (in Russian)

73. Pszczolkowski M.A., Chiang A.S. Effects of chilling stress on allatal growth and juvenile hormone synthesis in the cockroach, Diploptera punctate. J. Insect Physiol. 2000;46:923-931.

74. Rauschenbach I.Yu. Neyroendokrinnaya regulyatsiya razvitiya nase-komykh v usloviyakh stressa: Genetiko-fiziologicheskie aspekty [Neuroendocrine Regulation of Insect Development under Stress: Genetic and Physiological Aspects]. Novosibirsk: Nauka Publ., 1990. (in Russian)

75. Rauschenbach I.Yu. Stress-response in insects: mechanism, genetic control, role in adaptation. Genetika = Genetics (Moscow). 1997; 33:1110-1118. (in Russian)

76. Rauschenbach I.Y., Budker V.G., Korochkin L.I. Pupal esterase of D. virilis splits juvenile hormone. Dros. Inf. Serv. 1983a;59:104. Rauschenbach I.Yu., Karpova E.K., Adonyeva N.V., Andreenkova O.V., Faddeeva N.V., Burdina E.V., Alekseev A.A., Mensha-nov P.N., Gruntenko N.E. Disruption of insulin signalling affects the neuroendocrine stress reaction in Drosophila females. J. Exp. Biol. 2014;217:1-9.

77. Rauschenbach I.Y., Lukashina N.S., Korochkin L.I. Role of pupal esterase in the regulation of the D. virilis stosks differing in response to high temperature. Dev. Genet. 1980;1:295-310.- Rauschenbach I.Y., Lukashina N.S., Korochkin L.I. Genetic of esterase in Drosophila. VII. The genetic control of the activity level of the JH-esterase and heat-resistance in Drosophila virilis under high temperature. Biochem. Genet. 1983b;21:253-266.

78. Raushenbakh I.Yu., Lukashina N.S., Korochkin L.I. Genetic-endocrine regulation of the development of Drosophila in extreme environmental conditions: III. Effect of high culture density on survival, hormonal status and activity of Drosophila virilis JH-esterase. Gene-tika = Genetics (Moscow). 1983;19:1439-1445. (in Russian)

79. Rauschenbach I.Y., Lukashina N.S., Maksimovsky L.F., Korochkin L.I. Stress-like reaction of Drosophila to advers environmental factors. J. Comp. Physiol. B. 1987;157:519-531.

80. Rauschenbach I.Yu., Sukhanova M.J., Hirashima A., Sutsugu E., Kua-no E. Role of the ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady RAN = Proceedings of the Russian Academy of Sciences. 2000;375:568-570. (in Russian)

81. Richard D.S., Applebaum S.W., Gilbert L.I. Allatostatic reulation of juvenile hormone production in vitro by the ring gland of Drosophila melanogaster. Mol. Cell. Endocrinol. 1990;68:153-161.

82. Saltykova E.S., Ben'kovskaya G.V., Gayfullina L.R., Novitskaya O.P., Poskryakov A.V., Nikolenko A.G. Reaction of individual physiological barriers to bacterial infection in various races of the honey bee Apis mellifera. Zhurnal evolyutsionnoy biokhimii i fiziologii = Journal of Evolutionary Biochemistry and Physiology. 2005;41(3):254-258. (in Russian)

83. Selye H. Stress bez distressa [Stress without Distress]. Moscow: Progress Publ., 1979. (in Russian)

84. Selye H. Ot mechty k otkrytiyu [From Dream to Discovery]. Moscow: Progress Publ., 1987. (in Russian)

85. Singh H., Pandey P.N. Experimental assessment of effects of larval crowding on development and reproduction in Diacrisia obliqua Walker (Lep., Arctiidae). Biochem. Exp. Biol. 1980;16:157-164.

86. Sokolyanskaya M.P., Ben'kovskaya G.V., Nikolenko A.G. Dynamics of the formation of resistance to various stress factors in housefly larvae. Agrokhimiya = Agrochemistry. 2005;9:70-75.

87. Stay B., Fairbairn S., Yu C.G. Role of allaststins in the regulation of juvenile hormone synthesis. Arch. Insect Biochem. Physiol. 1996;32: 287-297.

88. Sudakov K.V. Specific mechanisms of emotional stress. Third Symp. on Catecholamines and other Neurotransmitters in Stress, Smolenica Castle, Czchoslovakia. 1983;87.

89. Tauchman S.J., Lorch J.M., Orth A.P., GoodmanW.G. Effects of stress on the hemolymph juvenile hormone binding protein titres of Man-duca sexta. Insect Biochem. Mol. Biol. 2007;37:847-854.

90. Tobe S.S., Stay B. Structure and regulation of the corpus allatum. Adv. Insect Physiol. 1985;18:305-432.

91. Tyshchenko V.P., Fiziologiya nasekomykh [Physiology of Insects]. Moscow: Vysshaya shkola Publ., 1986. (in Russian)

92. Velki M., Kodrik D., Vecera J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77-84. DOI 10.1016/j. ygcen.2010.12.009.

93. Vigas M. Problem of definition of stress stimulus and specificity of stress response. Third Symp. on Catecholamines and other Neurotransmitters in Stress, Smolenica Castle, Czchoslovakia, 1983;94.

94. Viru A.A. Gormonalnye mekhanizmy adaptatsii i trenirovki [Hormonal Mechanisms of Adaptation and Training]. Leningrad: Nauka Publ., 1981. (in Russian)

95. Wigglesworth V.B. Hormone balance and the control of metamorphosis in Rhodnius prolixus (Hemiptera). J. Exp. Biol. 1952;29:620-631. Wigglesworth V.B. High temperature and arrested growth in Rhodnius: Quantitative requirements for ecdysone. J. Exp. Biol. 1955;32:649-655.

96. Wundt B. Osnovy fiziologicheskoy psikhologii. Chuvstva i affekty. [Principles of Physiological Psychology. Feelings and Passions]. Leningrad, 1980;55(3). (in Russian)

97. Zhao H.W., Haddad G.G. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta. 2011;32:S104-S108. DOI 10.1016/j.placenta.2010.11.017.


Просмотров: 173


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)