Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The neuroendocrine stress-response in insects: the history of the development of the concept

https://doi.org/10.18699/VJ17.302

Abstract

The neuroendocrine stress-response is an effective defense mechanism against adverse influences of various nature. This reaction is universal and appears in response to stimuli that are unusual not just for living and habitat of the species, but also for each population. Here we review a progressive change of theoretical concepts, approaches and methods of research in this scientific field: beginning with the development of the stress concept by H. Selye and up to the present day. In 1982 H. Selye defined stress as a combination of stereotypical phylogenetic programmed  reactions of the organism that are caused by any strong, superstrong or extreme influences and are followed by a reorganization of the organism’s adaptive forces. The stress-causing agent was named a stressor. In the dy namics of the complex of nonspecific protectiveadaptive reactions that respond to a stressful influence aimed at cultivating the organism’s resistance to any factor, it is possible to logically identify three stages (“the Selye triad”): 1) alarm state, 2) resistance state, 3) exhaustion state. The duration and the expression of each stage can vary depending on the nature and strength of the stressor agent, the species of the animal and the physiological state of the organism. The lack of a hypothalamic-pituitary-adrenocortical system in insects was considered a proof of their inability to develop a stress reaction of the warm-blooded animals’ type. Nevertheless, since the early 1980s, enough evidence of the development of stress reaction in insects has been gathered, which emphasizes the conservative nature of the stress reaction in mammals and insects. The similarity in the neurochemical and physiological changes in invertebrates and vertebrates in response to a stressful influence indicates that the response to a stressor is a complex of ancient mechanisms preserved in evolution. Insects present unique opportunities for experimentation, which can allow us to understand the basic mechanisms of stress reactions. In insect larvae the mechanism of stress reaction has been studied in detail. In this century, the main efforts of researchers are aimed at studying the mechanisms of stress reaction in imago and genetic control of its individual links. The study of stress reaction in insects has both theoretical importance, as it demonstrates the convergence of evolutionary pathways of adaptive transformations in such distant taxa as insects and mammals, and practical importance, since the patterns of this reaction’s mechanisms can be used in modeling hereditary or acquired human diseases, in developing breeding methods for economically valuable insects and in finding ways to fight insect pests

About the Authors

M. A. Eremina
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


N. E. Gruntenko
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


References

1. Adamo S.A. The effects of the stress response on immune function in invertebrates: An evolutionary perspective on an ancient connection. Horm. Behav. 2012;62:324-330.

2. Adamo S.A. The stress response and immune system share, borrow, and reconfigure their physiological network elements: evidence from the insects. Horm. Behav. 2017a:88:25-30. DOI 10.1016/j.yhbeh.2016.10.003.

3. Adamo S.A. Stress responses sculpt the insect immune system, allowing for better defense in an ever - changing world. Dev. Comp. Immunol. 2017b;66:24-32. DOI 10.1016/j.dci.2016.06.005.

4. Adamo S.A. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior. Integr. Comp. Biol. 2014;54(3):419-426. DOI 10.1093/icb/icu005.

5. Adamo S.A., Easy R., Kovalko I., MacDonald J., McKeen A., Swan-burg T., Turnbull K.F., Reeve C. Predator stress-induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? J. Exp. Biol. 2017;220:868-875. DOI 10.1242/jeb.153320.

6. Adamo S.A., Kovalko I., Mosher B. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response. J. Exp. Biol. 2013;216:4608-4614.

7. Ahmad S. Oxidative stress from environmental pollutants. Arch. Insect Biochem. Physiol. 1995;29:135-157. DOI 10.1002/arch.940290205.

8. Apchel V.Ya., Tsygan V.N. Stress i stressoustoychivost cheloveka [Stress and stress resistance in a human]. Saint-Petersburg: VMA Publ., 1999. (in Russian)

9. Bednarova A., Krishnan N., Cheng I.-C., Vecera J., Lee H.-J., Ko-drik D. Adipokinetic hormone counteracts oxidative stress elicited in insects by hydrogen peroxide: in vivo and in vitro study. Physiol. Entomol. 2013;38:54-62. DOI 10.1111/phen.12008.

10. Bendena W.G., Donly B.C., Tobe S.S. Allatostatins: A growing family of neuropeptides with structural and functional diversity. Ann. N. Y. Acad. Sci. 1999;897:311-329.

11. Ben'kovskaya G.V., Leontyeva T.L., Udalov M.B. Resistance of the Colorado beetle to insecticides in the Southern Ural. Agrokhimiya = Agrochemistry. 2008;8:55-59. (in Russian)

12. Ben'kovskaya G.V., Nikolenko A.G., Saltykova E.S., Ishmurato-va N.M., Kharisov R.Ya., Ishmuratov G.Yu. The adaptogenic effect of Biosil on the honey bee and house fly. Agrokhimiya = Agrochemistry. 2005;3:74-78. (in Russian)

13. Ben'kovskaya G.V., Poskryakov A.V., Nikolenko A.G. Effect of me-thoprene on the tolerance of heat shock in the ontogenesis of the Colorado beetle. Agrokhimiya = Agrochemistry. 2000;12:58-61. (in Russian)

14. Ben'kovskaya G.V., Sokolyanskaya M.P. Sensitivity to thermal stress in adult house flies of laboratory strains selected by insecticides and abiotic factors. Agrokhimiya = Agrochemistry. 2008;3:52-56. (in Russian)

15. Ben'kovskaya G.V., Udalov M.B., Poskryakov A.V., Nikolenko A.G. Phenogenetic polymorphism of the Colorado beetle Leptinotarsa decemlineata Say and its sensitivity to insecticides in Bashkiria. Agrokhimiya = Agrochemistry. 2004;12:23-28. (in Russian)

16. Bi J.L., Felton G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995;21:1511-1530. DOI 10.1007/BF02035149.

17. Bogus M.I., Cymborowski B. Chilled Galleria mellonella larvae: Mechanism of supernumerary moulting. Physiol. Entomol. 1981;6: 343-348.

18. Bogus M.I., Wisniewski J.R., Cymborowski B. Effect of injury to the neuroendocrine system of last instar larvae of Galleria mellonella. J. Insect Physiol. 1986;32:1011-1018.

19. Cannon W.B. The Wisdom of the Body. N. Y.: W.W. Norton, 1932. Chentsova N.A., Alekseev A.A., Gruntenko N.E., Rauschenbach I.Yu. Effect of octopamine on the activity of ecdysone monooxygenase in Drosophila. Doklady AN = Proceedings of the Academy of Sciences. 2007;415:559-561. (in Russian)

20. Chernysh S.I. Response of the neuroendocrine system on the damaging effects. Trudy Vsesoyuznogo entomologicheskogo obshchestva = Proceedings of the Russian Entomological Society. 1983;64:118-127. (in Russian)

21. Chernysh S.I. Neuroendocrine system in insect stress. Eds. J. Ivanovic, M. Jankovic-Hladni. Hormones and Metabolism in Insect Stress. Boca Raton: CRC Press, 1991;69-98.

22. Chertkova E.A. A change in the dopamine level in the hemolymph of larvae of the cabbage scoop Mamestra brassicae (Lepidoptera: Noctuidae) and the Colorado beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) in various diseases. New knowledge about parasites. Materialy V Mezhregionalnoy konferentsii “Parazi-tologicheskie issledovaniya v Sibiri i na Dalnem Vostoke” [Proceedings of the V Transregional Conference “Parasitological Studies in Siberia and the Far East”]. Novosibirsk, 2015;131-132. (in Russian)

23. Cymborowski B. Effect of cooling stress on endocrine events in Galleria mellonella. Endocrinological frontiers in physiological insect ecology. Wroclaw. 1988;1:203-212.

24. Cymborowski B., Bogus M.I. Juvenilizing effect of cooling on Galleria mellonella. J. Insect Physiol. 1976;22:669-672.

25. Cymborowski B., Bogus M., Beckage N.E., Williams C.M., Riddi-ford L.M. Juvenile hormone titrres and metabolism during starvation-induced supernumerary larval moulting of the tabacco horn-worm, Manduca sexta L. J. Insect Physiol. 1982;28:129-135.

26. Davenpont A.K., Evans P.D. Stress-indeced changed in octopamine levels of insect hemolymph. Insect Biochem. 1984;14:135-150.

27. Evans P.D. Octopamine. Eds. G.A. Kerkut, L.I. Gilbert. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1985;11:499-538.

28. Even N., Devaud J.M., Barron A.B. General stress responses in the honey bee. Insects. 2012;3:1271-1298. DOI 10.3390/insects3041271.

29. Gayfullina L.R., Saltykova E.S., Ben'kovskaya G.V., Nikolenko A.G. Immune responses of larvae and imagoes of the Colorado beetle (Leptinotarsa decemlineata Say) to a biological potato protectant. Agrokhimiya = Agrochemistry. 2004;9:1-7. (in Russian)

30. Gorizontov P.D. Rezistentnost i porazhenie. Voprosy obshchey patolo-gii [The resistance and damage. Issues of general pathology]. Pa-tologicheskaya fiziologiya ekstremalnykh sostoyaniy [Pathological physiology of extreme conditions]. Moscow: Meditsina Publ., 1973. (in Russian)

31. Gruntenko N.E. Stress i razmnozhenie nasekomykh: gormonalnyy kon-trol [Stress and Reproduction of Insects: Hormonal Control]. Novosibirsk; Moscow: KMK Publ., 2008. (in Russian)

32. Gruntenko N.E., Bogomolova E.V., Adonyeva N.V., Karpova E.K., Menshanov P.N., Alekseev A.A., Romanova I.V., Li S., Rauschen-bach I.Y. Decrease in juvenile hormone level as a result of genetic ablation of the corpus allatum cells affects the synthesis and metabolism of stress related hormones in Drosophila. J. Insect Physiol. 2012;58:49-55.

33. Gruntenko N.E., Bownes M., Terashima J., Suchanova M.Zh., Rau-schenbach I.Yu. Heat stress affects oogenesis differently in wild type Drosophila virilis and a mutant with altered juvenile hormone and 20-hydroxyecdysone levels. Insect Mol. Biol. 2003a;12:393-404.

34. Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Bownes M., Segal D., Adonyeva N.V., Rauschenbach I.Yu. Stress response in a juvenile hormone deficient Drosophila melanogaster mutant apter-ous56f. Insect Mol. Biol. 2003b;12:353-363.

35. Gruntenko N.E., Chentsova N.A., Andreenkova E.V., Karpova E.K., Glazko G.V., Monastirioti M., Rauschenbach I.Yu. The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to heat stress. Arch. Insect Biochem. Physiol. 2004;55:55-67.

36. Gruntenko N.E., Karpova E.K., Adonyeva N.V., Chentsova N.A., Fad-deeva N.V., Alekseev A.A., Rauschenbach I.Yu. Juvenile hormone, 20-hydroxyecdisone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. J. Insect Physiol. 2005a;51:417-425.

37. Gruntenko N.E., Karpova E.K., Alekseev A.A., Chentsova N.A., Sa-prykina Z.V., Bownes M., Rauschenbach I.Yu. Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. J. Insect Physiol. 2005b;51:959-968.

38. Gruntenko N.E., Rauschenbach I.Yu. Interplay of juvenile hormone, 20-hydroxyecdisone and biogenic amines under normal and stress conditions and its effect on reproduction. J. Insect. Physiol. 2008; 54:902-908.

39. Gruntenko N.E., Rauschenbach I.Yu. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A minireview. Gen. Comp. Endocrinol. 2017. DOI 10.1016/j.ygcen.2017. 05.019.

40. Gruntenko N.E., Wen D., Karpova E.K., Adonyeva N.V., Liu Y., He Q., Faddeeva N.V., Fomin A.S., Li S., Rauschenbach I.Yu. Altered ju--venile hormone metabolism, reproduction and stress response in Drosophila adults with genetic ablation of the corpus allatum cells. Insect Biochem. Mol. Biol. 2010;40: 891-897.

41. Gruntenko N.E., Wilson T.G., Monastirioti M., Rauschenbach I.Yu. Stress-reactivity and juvenile hormone degradation in Drosophila melanogaster strains having stress-related mutations. Insect Bio-chem. Mol. Biol. 2000;30:775-783.

42. Harris J.W., Woodring J. Effects of stress age, season and source colony on the level of octopamine, dopamine and serotonin in the honey bee (Apis melifera L.) brain. J. Insect Physiol. 1992;38:29-35.

43. Hirashima A., Eto M. Chemical-induced changed in the biogenic amine levels of Periplaneta americana L. Pestic. Biochem. Physiol. 1993;46:131-140.

44. Hirashima A., Nagano T., Eto M. Effect of various insecticides on the larval growth and biogenic amine levels of Tribolium castaneum Herbst. Comp. Biochem. Physiol. 1994;107C:393-398.

45. Hirashima A., Rauschenbach I.Yu., Sukhanova M.Jh. Ecdisteroids in stress responsive and nonresponsive Drosophila virilis lines under stress conditions. Biosci. Biotech. Biochem. 2000;64:2657-2662.

46. Holzenberger M., Dupont J., Ducos B., Leneuve P., Geloen A., Even P.C., Cervera P., Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;42: 182-187.

47. Ivanovic J., Jankovic-Hladni M., Milanovic M.P. Possible role of neurosecretory cells, Type A in response of Morimus funereus larvae to the effect of temperature. J. Therm. Biol. 1975;1:53-57.

48. Ivanovic J., Jankovic-Hladni M., Stanic V., Milanovic M.P., Nenado-vic V. Possible role of neurohormones in the process of acclimatization and acclimation in Morimus funereus larvae (Insecta). I. Changes in the neuroendocrine system and target organs (midgut, hemolymph) during the annual cycle. Comp. Biochem. Physiol. 1979;80A:107-112.

49. Ivanovic J., Jankovic-Hladni M., Stanic V., Kalafatc D. Differences in the sensitivity of protocerebral neurosecretory cells arising from the effect of different factors in Morimus funereus larvae. Comp. Bio-chem. Physiol. 1985;80A:107-113.

50. Ivanovic J., Jankovic-Hladni M., Stanic V., Nenadovic V., Frusic M. The role of neurosecretion and metabolism in development of an oli-gophagous feeding habit in Morimus funereus larvae (Col., Ceram-bycidae). Comp. Biochem. Physiol. 1989;74:189-197.

51. James V. Psikhologiya [Psychology]. Saint-Petersburg, 1905. (in Russian)

52. Jankovic-Hladni M. Hormones and metabolism in insect stress (Historical survey). Eds. J. Ivanovic, M.I. Jankovic-Hladni. Hormones and Metabolism in Insect Stress. Boca Raton: CRS Press, 1991;5-27.

53. Jankovic-Hladni M., Chen C.A., Ivanovic J., Djordjevic S., Stanic V., Peric Mataruga V., Frusic M. Effects of diet and temperature on Morimus funereus larvae hemolymph cation concentrations. Arch. Insect Biochem. Physiol. 1992;20:205-214.

54. Jankovic-Hladni M., Ivanovic J., Nenadovic V., Stanic V. The selective response of the protocerebral neurosecretory cells of the Ceram-byx cerdo larvae to the effect of different factors. Comp. Biochem. Physiol. 1983;74A:131-136.

55. Johnson E.C., White M.P. Stressed-Out Insects: Hormonal Actions and Behavioral Modifications. Eds. D.W. Pfaff, A.P. Arnold, S.E. Fahr-bach, A.M. Etgen, R.T. Rubin. Hormones, Brain and Behavior. San Diego: Academic Press, 2009;1069-1096.

56. Kitaev-Smyk L.A. Psikhologiya stressa [Psychology of Stress]. Moscow: Nauka Publ., 1983. (in Russian)

57. Kodrik D., Bednarova A., Zemanova M., Krishnan N. Hormonal regulation of response to oxidative stress in insects - an update. Int. Mol. Sci. 2015;16:25788-25816.

58. Kositskiy G.I., Smirnov V.M. Nervnaya sistema i “stress” (o printsipe dominanty v patologii) [The Nervous System and ‘Stress' (The Principle of Dominance in Pathology)]. Moscow: Nauka Publ., 1970. (in Russian)

59. Kramer S.J., Toschi A., Miller C.A., Kataoka H., Quistad G.B., Li J.P., Carney R.L., Schooley D.A. Identification of an allastatin from thetabacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA. 1991;88:9458-9462.

60. Krishnan N., Kodrik D. Endocrine control of oxidative stress in insects. Eds T. Farooqui, A.A. Farooqui. Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling. New Jersey: Wiley-Blackwell, 2012;261-270.

61. Lalouette L., Williams C.M., Hervant F., Sinclair B.J., Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. 2011;158:229-234. DOI 10.1016/j.cbpa.2010.11.007.

62. Lawrence P.O. Hormonal interactions between parasitoids and hosts: adaptation to stress? Endocrinological Frontiers in Physiological Insect Ecology. Wroclaw: Tech. Univ. Press, 1988;423-435.

63. Lekovic S., Lazarevic J., Nenadovic V., Ivanovic J. The effect of heat stress on the activity of A1 and A2 neurosecretory neurons of Mori-mus funereus (Coleoptera: Cerambycidae) larvae. Eur. J. Entomol. 2001;98:13-18.

64. McCaleb D.C., Kumaran A.K. Control of juvenile hormone esterase activity in Galleria mellonella larvae. J. Insect Physiol. 1980;26: 171-177.

65. Meerson F.Z. Adaptatsiya, stress i profilaktika [Adaptation, Stress and Prevention]. Moscow: Nauka Publ., 1981. (in Russian)

66. Meng J.-Y., Zhang C.-Y., Zhu F., Wang X.-P., Lei C.-L. Ultraviolet light-induced oxidative stress: Effects on antioxidant response of Helicoverpa armigera adults. J. Insect Physiol. 2009;55:588-592. DOI 10.1016/j.jinsphys.2009.03.003.

67. Mobius P., Penzlin H. Stress-induced release of octopamine in the American cockroach Periplaneta americana L. Acta Biol. Hung. 1993;44:45-50.

68. Mrdakovic M., Ilijin L., Vlahovic M., Jankovic-Tomanic M., Peric Mataruga V., Lazarevic J., Nenadovic V. The effects of different constant temperatures on the activity of corpora allata in Morimus funereus (Coleoptera: Cerambycidae) larvae. Arch. Biol. Sci. 2003; 55:21-22.

69. Neckameyer W.S., Weinstein J.S. Stress affects dopaminergic signaling pathways in Drosophila melanogaster. Stress. 2005;8:117-131.

70. O'Kasha A.Y.K. Effect of sub-lethal high temperature on insect, Rhod-nius prolixus (Stal). I. Induction of delayed moutling and defects. J. Exp. Biol. 1968;48:455-463.

71. Peric-Mataruga V., Lazarevic J., Nenadovic V. A possible role for the dorsolateral protocerebral neurosecretory neurons in the trophic adaptations of Lymantria dispar (Lepidoptera : Lymantriidae). Eur. J. Entomol. 2001;98:257-264.

72. Pogodaev K.I. K biologicheskim osnovam “stressa” i “adaptatsionnogo sindroma”. [Biological foundations of “stress” and “the adaptation syndrome”]. Aktualnye problemy stressa [Topical Issues in Stress]. Chisinau: Shtiintsa Publ., 1976. (in Russian)

73. Pszczolkowski M.A., Chiang A.S. Effects of chilling stress on allatal growth and juvenile hormone synthesis in the cockroach, Diploptera punctate. J. Insect Physiol. 2000;46:923-931.

74. Rauschenbach I.Yu. Neyroendokrinnaya regulyatsiya razvitiya nase-komykh v usloviyakh stressa: Genetiko-fiziologicheskie aspekty [Neuroendocrine Regulation of Insect Development under Stress: Genetic and Physiological Aspects]. Novosibirsk: Nauka Publ., 1990. (in Russian)

75. Rauschenbach I.Yu. Stress-response in insects: mechanism, genetic control, role in adaptation. Genetika = Genetics (Moscow). 1997; 33:1110-1118. (in Russian)

76. Rauschenbach I.Y., Budker V.G., Korochkin L.I. Pupal esterase of D. virilis splits juvenile hormone. Dros. Inf. Serv. 1983a;59:104. Rauschenbach I.Yu., Karpova E.K., Adonyeva N.V., Andreenkova O.V., Faddeeva N.V., Burdina E.V., Alekseev A.A., Mensha-nov P.N., Gruntenko N.E. Disruption of insulin signalling affects the neuroendocrine stress reaction in Drosophila females. J. Exp. Biol. 2014;217:1-9.

77. Rauschenbach I.Y., Lukashina N.S., Korochkin L.I. Role of pupal esterase in the regulation of the D. virilis stosks differing in response to high temperature. Dev. Genet. 1980;1:295-310.- Rauschenbach I.Y., Lukashina N.S., Korochkin L.I. Genetic of esterase in Drosophila. VII. The genetic control of the activity level of the JH-esterase and heat-resistance in Drosophila virilis under high temperature. Biochem. Genet. 1983b;21:253-266.

78. Raushenbakh I.Yu., Lukashina N.S., Korochkin L.I. Genetic-endocrine regulation of the development of Drosophila in extreme environmental conditions: III. Effect of high culture density on survival, hormonal status and activity of Drosophila virilis JH-esterase. Gene-tika = Genetics (Moscow). 1983;19:1439-1445. (in Russian)

79. Rauschenbach I.Y., Lukashina N.S., Maksimovsky L.F., Korochkin L.I. Stress-like reaction of Drosophila to advers environmental factors. J. Comp. Physiol. B. 1987;157:519-531.

80. Rauschenbach I.Yu., Sukhanova M.J., Hirashima A., Sutsugu E., Kua-no E. Role of the ecdysteroid system in the regulation of Drosophila reproduction under environmental stress. Doklady RAN = Proceedings of the Russian Academy of Sciences. 2000;375:568-570. (in Russian)

81. Richard D.S., Applebaum S.W., Gilbert L.I. Allatostatic reulation of juvenile hormone production in vitro by the ring gland of Drosophila melanogaster. Mol. Cell. Endocrinol. 1990;68:153-161.

82. Saltykova E.S., Ben'kovskaya G.V., Gayfullina L.R., Novitskaya O.P., Poskryakov A.V., Nikolenko A.G. Reaction of individual physiological barriers to bacterial infection in various races of the honey bee Apis mellifera. Zhurnal evolyutsionnoy biokhimii i fiziologii = Journal of Evolutionary Biochemistry and Physiology. 2005;41(3):254-258. (in Russian)

83. Selye H. Stress bez distressa [Stress without Distress]. Moscow: Progress Publ., 1979. (in Russian)

84. Selye H. Ot mechty k otkrytiyu [From Dream to Discovery]. Moscow: Progress Publ., 1987. (in Russian)

85. Singh H., Pandey P.N. Experimental assessment of effects of larval crowding on development and reproduction in Diacrisia obliqua Walker (Lep., Arctiidae). Biochem. Exp. Biol. 1980;16:157-164.

86. Sokolyanskaya M.P., Ben'kovskaya G.V., Nikolenko A.G. Dynamics of the formation of resistance to various stress factors in housefly larvae. Agrokhimiya = Agrochemistry. 2005;9:70-75.

87. Stay B., Fairbairn S., Yu C.G. Role of allaststins in the regulation of juvenile hormone synthesis. Arch. Insect Biochem. Physiol. 1996;32: 287-297.

88. Sudakov K.V. Specific mechanisms of emotional stress. Third Symp. on Catecholamines and other Neurotransmitters in Stress, Smolenica Castle, Czchoslovakia. 1983;87.

89. Tauchman S.J., Lorch J.M., Orth A.P., GoodmanW.G. Effects of stress on the hemolymph juvenile hormone binding protein titres of Man-duca sexta. Insect Biochem. Mol. Biol. 2007;37:847-854.

90. Tobe S.S., Stay B. Structure and regulation of the corpus allatum. Adv. Insect Physiol. 1985;18:305-432.

91. Tyshchenko V.P., Fiziologiya nasekomykh [Physiology of Insects]. Moscow: Vysshaya shkola Publ., 1986. (in Russian)

92. Velki M., Kodrik D., Vecera J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77-84. DOI 10.1016/j. ygcen.2010.12.009.

93. Vigas M. Problem of definition of stress stimulus and specificity of stress response. Third Symp. on Catecholamines and other Neurotransmitters in Stress, Smolenica Castle, Czchoslovakia, 1983;94.

94. Viru A.A. Gormonalnye mekhanizmy adaptatsii i trenirovki [Hormonal Mechanisms of Adaptation and Training]. Leningrad: Nauka Publ., 1981. (in Russian)

95. Wigglesworth V.B. Hormone balance and the control of metamorphosis in Rhodnius prolixus (Hemiptera). J. Exp. Biol. 1952;29:620-631. Wigglesworth V.B. High temperature and arrested growth in Rhodnius: Quantitative requirements for ecdysone. J. Exp. Biol. 1955;32:649-655.

96. Wundt B. Osnovy fiziologicheskoy psikhologii. Chuvstva i affekty. [Principles of Physiological Psychology. Feelings and Passions]. Leningrad, 1980;55(3). (in Russian)

97. Zhao H.W., Haddad G.G. Review: Hypoxic and oxidative stress resistance in Drosophila melanogaster. Placenta. 2011;32:S104-S108. DOI 10.1016/j.placenta.2010.11.017.


Review

Views: 1174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)