Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Metabolic and motor activity effects of microalgae (Chlorella vulgaris) in laboratory mice

https://doi.org/10.18699/VJ17.304

Abstract

In recent years, the microalgae (Chlorella vulgaris) have increasingly attracted great interest as a potential source of pharmacologically active compounds. Showing anticoagulation, antioxidant and antitumor activities of Chlorella revealed its hypotensive properties. The aim of this study was to evaluate the effects of Chlorella suspension on the weight of the animals, their moving activity, and erythropoiesis. The study was performed on males and females of ICR mice. The animals from the experimental group drank only the Chlorella suspension during 3 weeks and were given standard food. Control animals drank during this period only water and had the same food. The body weight of males in the control and the experimental group with Chlorella did not change, while females in the experimental group showed an increase of body weight in a week. A similar pattern was obtained for estimation of animal body weight changes relative to food consumption. The number of red blood cells in females and males from group with Chlorella increased only after 3 weeks after the start of the experiment. Hemoglobin also increased only after 3 weeks after the start of Chlorella consumption, but only for females. All groups of animals had the same motor activity during experiment. Blood sampling resulted in a reduction of activity in control males and females as well as in males with Chlorella. The motor activity of females with Chlorella after blood sampling did not change. So, consumption of the Chlorella suspension by females leads to more effective digestion and resulted in increased body weight, improved erythropoiesis resulted in increased red blood cells and hemoglobin and also increased their resistance to acute stress. The males in the same situation increased only the erythropoiesis.

About the Authors

E. L. Zavjalov
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


D. V. Petrovskii
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


G. V. Kontsevaya
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


V. V. Mak
Institute of Cytology and Genetics SB RAS.
Russian Federation
Novosibirsk.


I. P. Uvarov
Veterinary control of Novosibirsk.
Russian Federation
Novosibirsk.


Y. L. Zav’yalova
Novosibirsk State Pedagogical University.
Russian Federation
Novosibirsk.


O. A.  Rozhkov
Veterinary control of Novosibirsk region.
Russian Federation
Novosibirsk.


References

1. Aguilera-Morales M., Casas-Valdez M., Carrillo-Dominguez S., Gonzalez-Acosta B., Perez-Gil F. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. J. Food Comp. Anal. 2005;18(1):79-88.

2. An B.K., Jeon J.Y., Kang C.W., Kim J.M., Hwang J.K. The tissue distribution of lutein in laying hens fed lutein-fortified chlorella and production of chicken eggs enriched with lutein. Korean J. Food Sci. Anim. Resour. 2014;34:172-177.

3. An B.K., Kim K.-E., Jeon J.Y., Lee K.W. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. Springerplus. 2016;5(1):718-725. DOI 10.1186/s40064-016-2373-4.

4. An H.J., Rim H.K., Jeong H.J., Hong S.H., Um J.Y., Kim H.M. Hot water extracts of Chlorella vulgaris improve immune function in protein-deficient weanling mice and immune cells. Immunopharma-col. Immunotoxicol. 2010;32(4):585-592.

5. An H.J., Rim H.K., Lee J.H., Hong J.W., Kim N.H., Myung N.Y., Moon P.D., Choi I.Y., Na H.J., Jeong H.J., Park H.S., Han J.G., Um J.Y., Kim H.M. Effect of Chlorella vulgaris on immune-enhancement and cytokine production in vivo and in vitro. Food Sci. Biotechnol. 2008;17(5):953-958.

6. Buono S., Langellotti A.L., Martello A., Rinna F., Fogliano V. Functional ingredients from microalgae. Food Funct. 2014;5:1669-1685. DOI 10.1039/C4FO00125G.

7. Choi H., Jung S.K., Kim J.S., Kim K.W., Oh K.B., Lee P.Y., Byun S.J. Effects of dietary recombinant chlorella supplementation on growth performance, meat quality, blood characteristics, excreta microflora, and nutrient digestibility in broilers. Poult. Sci. 2016;pew345. DOI 10.3382/ps/pew345.

8. Duarte M.E., Noseda D.G., Noseda M.D., Tulio S., Pujol C.A., Da-monte E.B. Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine. 2001;8(1):53-58.

9. Fowden L. The quantitative recovery and colorimetric estimation of amino-acids separated by paper chromatography. Biochem J. 1951; 48(3):327-333.

10. Fowden L. The composition of the bulk proteins of Chlorella. Bio-chem. J. 1952;50(3):355-358.

11. Guzman S., Gato A., Calleja J.M. Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 2001;15:224-230. DOI 10.1002/ptr.715.

12. Guven K.C., Ozsoy Y., Ulutin O.N. Anticoagulant, fibrinolitic and an-tiagregant activity of carrageenans and alginic acid. Bot. Mar. 1991; 34(5):429-432.

13. Han J.G., Kang G.G., Kim J.K., Kim S.H. The present status and future of Chlorella. Food Sci. Ind. 2002;6:64-69.

14. Hasegawa T., Noda K., Kumamoto S., Ando Y., Yamada A., Yoshikai Y. Chlorella vulgaris culture supernatant (CVS) reduces psychological stress-induced apoptosis in thymocytes of mice. Int. J. Immunophar-macol. 2000;22(11):877-885.

15. Ibusuki K., Minamishima Y. Effect of Chlorella vulgaris extracts on murine cytomegalovirus infections. Nat. Immun. Cell Growth Regul. 1990;9(2):121-128.

16. Iwamoto H. Industrial production of microalgal cell-mass and secondary products - major industrial species - Chlorella. Ed. A. Richmond. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Blackwell Science, 2004;255-263.

17. Jeon J.Y., Kim K.E., Im H.J., Oh S.T., Lim S.U. The production of lutein-enriched eggs with dietary Chlorella. Korean J. Food Sci. Anim. Resour. 2012;32:13-17.

18. Khan Z., Bhadouria P., Bisen P.S. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005;6:373-379. DOI 10.2174/138920105774370607.

19. Kim W., Lee W.-B., Lee J.-W., Min B.-I., Baek S.K., Lee H.S., Cho S.-H. Traditional herbal medicine as adjunctive therapy for breast cancer: A systematic review. Compl. Ther. Med. 2015;23(4):626-632.

20. Kubatka P., Kapinova A., Kruzliak P., Kello M., Vybohova D., Kajo K., Novak M., Chripkova M., Adamkov M., Pec M., Mojzis J., Bojko-va B., Kassayova M., Stollarova N., Dobrota D. Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model. Nutrition. 2015;31(4):560-569. DOI 10.1016/j.nut.2014.08.010.

21. Lee H.S., Choi C.Y., Cho C., Song Y. Attenuating effect of chlorella supplementation on oxidative stress and NFkB activation in peritoneal macrophages and liver of C57BL/6 mice fed on an atherogenic diet. Biosci. Biotechnol. Biochem. 2003;67(10):2083-2090.

22. Lin Y.L., Liang Y.C., Lee S.S., Chiang B.L. Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kB and p38 mitogen-activated protein kinase pathways. J. Leukoc. Biol. 2005;78(2): 533-543.

23. Merchant R.E., Andre C.A. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern. Ther. Health Med. 2001;7(3):79-91.

24. Miyazawa Y., Murayama T., Ooya N., Wang L.F., Tung Y.C., Yama-guchi N. Immunomodulation by a unicellular green algae (Chlo-rella pyrenoidosa) in tumor-bearing mice. J. Ethnopharmacol. 1988; 24(2-3):135-146.

25. Mizoguchi T., Arakawa Y., Kobayachi M., Fujishima M. Influence of Chlorella powder intake during swimming stress in mice. Biochem. Biophys. Res. Commun. 2011;404:121-126.

26. Morris H.J., Almarales A., Carrillo O., Bermudez R.C. Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour. Technol. 2008;99:7723-7729.

27. Norziah M.H., Ching C.Y. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 2000;68(1):69-76.

28. Oh S.T., Zheng L., Kwon H.J., Choo Y.K., Lee K.W., Kang C.W., An B.K. Effects of dietary fermented Chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks. Asian-Austr. J. Anim. Sci. 2015;28(1):95-101. DOI 10.5713/ajas.14.0473.

29. Oh-Hama T., Miyachi S. Chlorella. Eds. M.A. Borowitzka, L.J. Boro-witzka. Microalgal Biotechnology. Cambridge: Cambridge University Press, 1988;3-26.

30. Queiroz M.L.S., Rodrigues A.P.O., Bincoletto C., Figueiredo C.A.V., Malacrida S. Protective effects of Chlorella vulgaris in lead-exposed mice infected with Listeria monocytogenes. Int. Immunopharmacol. 2003;3(6):889-900.

31. Panahi Y., Badeli R., Karami G.R., Badeli Z., Sahebkar A. A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complement. Ther. Med. 2015;23(4):598-602. DOI 10.1016/j.ctim.2015.06.010.

32. Panahi Y., Ghamarchehreh M.E., Beiraghdar F., Zare M., Jalalian H.R., Sahebkar A. Investigation of the effects of Chlorella vulgaris supplementation in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepatogastroenterology. 2012a;59:2099-2103.

33. Panahi Y., Mostafazadeh B., Abrishami A., Saadat A., Beiraghdar F., Tavana S., Pishgoo B., Parvin S., Sahebkar A. Investigation of the effects of Chlorella vulgaris supplementation on the modulation of oxidative stress in apparently healthy smokers. Clin. Lab. 2013;59: 579-587.

34. Panahi Y., Tavana S., Sahebkar A., Masoudi H., Madanchi N. Impact of adjunctive therapy with Chlorella vulgaris extract on antioxidant status, pulmonary function, and clinical symptoms of patients with obstructive pulmonary diseases. Sci. Pharm. 2012b;80:719-730.

35. Petrovskii D.V., Mak V.V., Romashchenko A.V., Kontsevaya G.V., Kolosova I.E., Lomovsky O.I., Odonmazhig P., Amgalan Zh., Mosh-kin M.P. The influence of nanobiocomposite obtained by mechanochemical synthesis from barren parts of sea-buckthorn on seasonal adaptive rearrangements in Djungarian hamsters. Khimiya v intere-sakh ustoychivogo razvitiya = Chemistry for Sustainable Development. 2012;4:449-456. (in Russian)

36. Pulz O., Gross W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004;65:635-648.

37. Ryadchikov V.G. Osnovy pitaniya i kormleniya sel'skokhozyaystven-nykh zhivotnykh [Fundamentals of Nutrition and Feeding of Farm Animals]. Krasnodar, 2014. (in Russian)

38. Tanaka K., Yamada A., Noda K., Hasegawa T., Okuda K., Shoyama Y., Nomoto K. A novel glycoprotein obtained from Chlorella vulgaris strain CK22 shows antimetastatic immunopotentiation. Cancer Immunol. Immunother. 1998;45(6):313-320.

39. Trento F., Cattaneo F., Pescador R., Porta R., Ferro L. Antithrombin activity of an algal polysaccharide. Thromb. Res. 2001;102(5):457-465.

40. Santoyo S., Plaza M., Jaime L., Ibanez E., Reglero G., Senorans F.J. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. J. Agric. Food Chem. 2010;58(15):8522-8527.

41. Slavich G.M., Irwin M.R. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull. 2014;140(3):774-815. DOI 10.1037/a0035302.

42. Vijayavel K., Anbuselvam C., Balasubramanian M.P. Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol. Cell Biochem. 2007;303: 39-44.

43. Wang H.M., Pan J.L., Chen C.Y., Chiu C.C., Yang M.H., Chang H.W., Chang J.S. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochem. 2010;45:1865-1872.

44. Yan L., Lim S.U., Kim I.H. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Aust. J. Anim. Sci. 2012;25(12):1742-1747. DOI 10.5713/ajas.2012.12352.

45. Yang F., Shi Y., Sheng J., Hu Q. In vivo immunomodulatory activity of polysaccharides derived from Chlorella pyrenoidosa. Eur. Food Res. Technol. 2006;224(2):225-228.

46. Zhang Q., Li N., Zhou G., Lu X., Xu Z., Li Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol. Res. 2003;48(2):151-155.


Review

Views: 671


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)