Olfactory transport efficiency of the amorphous and crystalline manganese oxide nanoparticles
https://doi.org/10.18699/VJ17.305
Abstract
About the Authors
A. V. RomashchenkoRussian Federation
Novosibirsk.
D. V. Petrovskii
Russian Federation
Novosibirsk.
M. B. Sharapova
Russian Federation
Novosibirsk.
Y. M. Moshkin
Russian Federation
Novosibirsk.
K. E. Kuper
Russian Federation
Novosibirsk.
K. N. Morozova
Russian Federation
Novosibirsk.
E. V. Kiseleva
Russian Federation
Novosibirsk.
M. P. Moshkin
Russian Federation
Novosibirsk.
References
1. Antonini J.M., Santamaria A.B., Jenkins N.T., Albini E., Lucchini R. Fate of manganese associated with the inhalation of welding fumes: potential neurological effects. Neurotoxicology. 2006;27(3):304-310.
2. Barman S.C., Singh R., Negi M.P.S., Bhargava S.K. Fine particles (PM2. 5) in ambient air of Lucknow city due to fireworks on Diwali festival. J. Environ. Biol. 2009;30(5):625-632.
3. Borm P.J.A. Particle toxicology: from coal mining to nanotechnology. Inhal. Toxicol. 2002;14(3):311-324.
4. Brook R.D., Bard R.L., Burnett R.T., Shin H.H., Vette A., Croghan C., Phillips M., Rodes C., Thornburg J., Williams R. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup. Environ. Med. 2010;68:224-230.
5. Chen Z., Meng H., Xing G., Yuan H., Zhao F., Liu R., Chang X., Gao X., Wang T., Jia G. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ. Sci. Technol. 2008;42(23):8985-8992.
6. Crater J.S., Carrier R.L. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 2010;10(12):1473-1483.
7. Donaldson K., Brown D., Clouter A., Duffin R., MacNee W., Renwick L., Tran L., Stone V. The pulmonary toxicology of ultrafine particles. J. Aerosol Med. 2002;15(2):213-220.
8. Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006;114(8):1172-1178.
9. Evdokov O.V., Titov V.M., Tolochko B.P., Sharafutdinov M.R. In situ time-resolved diffractometry at SSTRC. Nucl. Instrum. Meth. Phys. Res. A. 2009;603(1):194-195.
10. Ferrari S., Kitson C., Farley R., Steel R., Marriott C., Parkins D.A., Scarpa M., Wainwright B., Evans M.J., Colledge W.H. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Therapy. 2001;8(18):1380-1386.
11. Genter M.B., Newman N.C., Shertzer H.G., Ali S.F., Bolon B. Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol. Pathol. 2012;40(7):1004-1013.
12. Good D.J., Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 2009;9(5):2252-2264.
13. Gupta P., Chawla G., Bansal A.K. Physical stability and solubility advantage from amorphous celecoxib: the role of thermodynamic quantities and molecular mobility. Mol. Pharm. 2004;1(6):406-413.
14. Hancock B.C., Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000;17(4):397-404.
15. Heusinkveld H.J., Wahle T., Campbell A., Westerink R.H.S., Tran L., Johnston H., Stone V., Cassee F.R., Schins R.P.F. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94-106.
16. Iqbal A., Ahmad I., Khalid M.H., Nawaz M.S., Gan S.H., Kamal M.A. Nanoneurotoxicity to nanoneuroprotection using biological and computational approaches. J. Environ. Sci. Health. C. 2013;31(3): 256-284.
17. Kampfrath T., Maiseyeu A., Ying Z., Shah Z., Deiuliis J.A., Xu X., Kherada N., Brook R.D., Reddy K.M., Padture N.P. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ. Res. 2011;108(6): 716-726.
18. Kittelson D.B., Watts W.F., Johnson J.P. Nanoparticle emissions оп Minnesota highways. Atmos. Environ. 2004;38(1):9-19.
19. Kreyling W.G. Discovery of unique and ЕКМ-specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. Toxicol. Appl. Pharmacol. 2016;299: 41-46.
20. Lai S.K., О’^п^п D.E., Harrold S., Man S.T., Wang Y.-Y., Cone R., Hanes J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. 2007;104(5):1482-1487.
21. Lai S.K., Wang Y.-Y., Haras J. Mucus-penetrating nanoparticles for drug and gera delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009;61(2):158-171.
22. Мinni E., Gustafsson T.E., Koponen М., Kalliomaki P.-L. A study of the chemical structure of particles rn the welding fumes of mild and stainless steel. J. Aerosol Sci. 1984;15(1):57-68.
23. Mistry A., Glud S.Z., Kjems J., Randel J., Howard K.A., Stolnik S., Illum L. Effect of physicochemical properties on intranasal nanoparticle transit into murira olfactory epithelium. J. Drug Targeting. 2009;17(7):543-552.
24. Miyazaki S., Hori R., Arita T. Physico-chemical property and gastrointestinal absorption of some solid phases to tetracyclira. Yakugaku Zasshi. 1975;95(6):629.
25. Morales J.A., Herzog S., Kompter C., Frese K., Rott R. Axonal transport of Borna disease virus along olfactory pathways rn s|p>ntane-ously and experimentally infected rats. Med. Microbiol. Immunol. 1988;177(2):51-68.
26. Moshkin М.Р, Petrovski D.V., Akulov A.E., Romashchenko A.V., Ger-linskaya L.A., Ganimedov V.L., Muchnaya М.Т, Sadovsky A.S., Koptyug I.V., Savelov A.A. Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus. Proc. R. Soc. B: Biol. Sci. 2014;281(1792). DOI 10.1098/rspb.2014.0919.
27. Murdande S.B., Pikal М.J., Shanker К.М., Bogner R.H. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J. Pharm. Sci. 201099(3):1254-1264.
28. Norris D.A., Sinko P.J. Effect of size, surface charge, and hydrophobic-ity on the translocation of polystyrene microspheres through gastrointestinal mucin. J. Appl. Polym. Sci. 1997;63(11):1481-1492.
29. Parmalee N.L., Aschner М. Manganese and aging. Neurotoxicology. 2016;56:262-268.
30. Patchin E.S., Anderson D.S., Silva К.М., Uyeminami D.L., Scott (j.М., Guo T., Van Winkle L.S., Pinkerton K.E. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ. Health Persp. 2016; 124(12):1870. DOI 10.1289/EHP1234.
31. Ryzhikov A.B., Ryabchikova E.I., Sergeev A.N., Tkacheva N.V. Spread of Venezuelan equine encephalitis virus in mice olfactory tract. Arch. Virol. 1995;140(12):2243-2254.
32. Sharma V., Kumar A., Dhawan A. Nanomaterials: exposure, effects and toxicity assessment. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 2012;82(1):3-11.
33. Stroop W.G., Rock D.L., Fraser N.W. Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization. Lab. Invest. 1984;51(1):27-38.
34. Trickler W.J., Lantz S^., Schrand Л.М., Robinson B.L., Newport G.D., Schlager J.J., Paule М.СЬ, Slikker W., Biris A.S., Hussain S^. Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine. 2012;7(6):835-846.
35. Wu J., Wang C., Sun J., Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476-4489.
36. Yang W., Johnston K.P., Williams К.О. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur. J. Pharm. Biopharm. 2010;75(1): 33-41.