Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Huntington’s disease modeling on HEK293 cell line

https://doi.org/10.18699/VJ17.306

Abstract

Huntington’s disease is a hereditary neurodegenerative disorder caused by CAG trinucleotide repeat expansion in the first exon of HTT gene. The mutant HTT protein has an elongated polyglutamine tract and forms aggregates in the nuclei and cytoplasm of the striatal neurons. The pathological processes occurring in the medium spiny neurons of Huntington’s disease patients lead to neurodegeneration and consequently to the death. The molecular mechanisms of the pathology development are difficult to study due to the limited material availability and late onset of the manifestation. Therefore, one of the important tasks is generation of an in vitro model system of Huntington’s disease based on human cell cultures. The new genome editing approaches, such as CRISPR/Cas9, allow us to generate isogenic cell lines that can be useful for drug screening and studying mechanisms of molecular and cellular events triggered by certain mutation on an equal genetic background. Here, we investigated the viability and proliferative rate of several mutant HEK293 cell clones with mutations in the first exon of HTT gene. The mutant clones were obtained earlier using CRISPR/Cas9 genome editing technology. We showed that mutant cells partially reproduce the pathological phenotype, that is, they have reduced proliferation activity, an increased level of apoptosis and high sensitivity to treatment with 5μM MG132 proteasome inhibitor compared to the original HEK293 Phoenix cell line. Our results indicate that the mutation in the first exon of HTT gene affects not only neurons, but also other types of cells, and HEK293 cell clones bearing the mutation can serve as in vitro model for studying some mechanisms of HTT functioning.

About the Authors

D. V. Sharipova
Novosibirsk State University; Institute of Cytology and Genetics SB RAS; Meshalkin National Medical Research Center of the Ministry of Healthcare of the Russian Federation.
Russian Federation
Novosibirsk.


T. B. Malankhanova
Novosibirsk State University; Institute of Cytology and Genetics SB RAS; Meshalkin National Medical Research Center of the Ministry of Healthcare of the Russian Federation; Institute of Chemical Biology and Fundamental Medicine SB RAS.
Russian Federation
Novosibirsk.


A. A. Malakhova
Novosibirsk State University; Institute of Cytology and Genetics SB RAS; Meshalkin National Medical Research Center of the Ministry of Healthcare of the Russian Federation; Institute of Chemical Biology and Fundamental Medicine SB RAS.
Russian Federation
Novosibirsk.


References

1. An M.C., Zhang N., Scott G., Montoro D., Wittkop T., Melov S., Eller-by L.M. Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell. 2012;11(2):253-263. DOI 10.1016/j.stem.2012.04.026.An.

2. Baydyuk M., Baoji X. BDNF in Huntington's disease: role in pathogenesis and treatment. Huntington’s Disease - Core Concepts and Current Advances. InTech, 2012;495-507.

3. Currais A., Fisher W., Maher P., Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J. 2017;31(1):5-10. DOI 10.1096/fj. 201601184.

4. Freiermuth J.L., Powell-Castilla I.J., Gallicano I. Toward a CRISPR picture: use of CRISPR/Cas9 to model diseases in human stem cells in vitro. J. Cell. Biochem. 2017;7(May):1-7. DOI 10.1002/jcb.26162.

5. Jeon I., Lee N., Li J., Park I., Park K., Moon J., Shim S.H., Choi C., Chang D., Kwon J., Oh S., Shin D.A., Kim H.S., Do J.T., Lee D.R., Kim M., Kang K., Daley G.Q., Brundin P., Sjihwan S. Neuronal properties, in vivo effects and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells. 2012;30: 2054-2062. DOI 10.1002/stem.1135.

6. Kim M., Ho A., Lee J.H. Autophagy and human neurodegenerative diseases - A fly’s perspective. Int. J. Mol. Sci. 2017;18(7):1596. DOI 10.3390/ijms18071596.

7. Labbadia J., Morimoto R.I. Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013; 338(4):378-385. DOI 10.1016/j.tibs.2013.05.003.Huntington.

8. MacDonald M.E., Ambrose C.M., Duyao M.P., Myers R.H., Lin C., Srinidhi L., Barnes G., Taylor S.A., James M., Groat N., MacFar-lane H., Jenkins B., Anderson M.A., Wexler N.S., Gusella J.F., Bates G.P., Baxendale S., Hummerich H., Kirby S., North M., Youngman S., Mott R., Zehetner G., Sedlacek Z., Poustka A., Fri-schauf A., Lehrach H., Buckler A.J., Church D., Doucette-Stamm L., O’Donovan M.C., Riba-Ramirer L., Shah M., Stanton V.P., Strobel S.A., Draths K.M., Wales J.L., Dervan P., Housman D.E., Alterr M., Shiang R., Thompson L., Fielder T., Wasmuth J.J., Tagle D., Valdes J., Elmer L., Allard M., Castilla L., Swaroop M., Blanchard K., Collins F.C., Snell R., Holloway T., Gillespie K., Dat-son N., Shaw D., Harper P.S. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971-983.

9. Malakhova A.A., Sorokin M.A., Sorokina A.E., Malankhanova T.B., Mazurok N.A., Medvedev S.P., Zakiyan S.M. The genome editing approach for generation of isogenic cell lines modelling Huntington’s disease in vitro. Geny i kletki = Genes&Cells. 2016;9(3):106-113. (in Russian)

10. Martin D.D., Ladha S., Ehrnhoefer D.E., Hayden M.R. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38(1):26-35. DOI 10.1016/j.tins.2014.09.003.

11. Martin J.B., Gusella J.F. Huntington’s disease: Pathogenesis and management. N. Engl. J. Med. 1986;315:1267-1276.

12. Mochel F., Haller R.G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest. 2011;121(2):493-499. DOI 10.1172/JCI45691.

13. Nekrasov E.D., Vigont V.A., Klyushnikov S.A., Lebedeva O.S., Vas-sina E.M., Bogomazova A.N., Chestkov I.V., Semashko T.A., Kiseleva E., Suldina L.A., Bobrovsky P.A., Zimina O.A., Ryazantseva M.A., Skopin A.Y., Illarioshkin S.N., Kaznacheyeva E.V., Lagarkova M.A., Kiselev S.L. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 2016;11(27):1-15. DOI 10.1186/s13024-016-0092-5.

14. Orr A.L., Li S., Wang C., Li H., Wang J., Rong J., Xu X., Mastroberar-dino P.G., Greenamyre J.T., Li X. N-terminal mutant huntingtin associates with mitochondria and impairsmitochondrial trafficking. J. Neurosci. 2009;28(11):2783-2792. DOI 10.1523/JNEUROSCI.0106-08.2008.

15. Ramaswamy S., McBride J.L., Kordower J.H. Animal models of Huntington’s disease. ILAR J. 2007;48:356-373.

16. Seredenina T., Luthi-Carter R. What have we learned from gene expression profiles in Huntington’s disease? Neurobiol. Dis. 2012;45(1): 83-98. DOI 10.1016/j.nbd.2011.07.001.

17. Shaw G., Morse S., Ararat M., Graham F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 2002;16:869-871. DOI 10.1096/fj.01.

18. Song W., Chen J., Petrilli A., Liot G., Klinglmayr E., Zhou Y., Po-quiz P., Tjong J., Pouladi M.A., Hayden M.R., Masliah E., Ellis-man M., Rouiller I., Schwarzenbacher R., Bossy B., Perkins G., Bossy-Wetzel E. Mutant huntingtin binds the mitochondrial fission GTPase Drp1 and increases its enzymatic activty. Nat. Med. 2011; 17(3):377-382. DOI 10.1038/nm.2313.MUTANT.

19. Walker F.O. Huntington’s Disease. Lancet. 2007;369(9557):217-228. DOI 10.1055/s-2007-971176.


Review

Views: 1172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)