Preview

Vavilov Journal of Genetics and Breeding

Advanced search

THE BIOSYNTHESIS REGULATION OF POTATO STEROIDAL GLYCOALKALOIDS

https://doi.org/10.18699/VJ18.328

Abstract

Potato steroidal glycoalkaloids (SGAs) compose a part of plant immunity. Some of their modified variants are toxic to humans. In the course of potato domestication, plants with a lower SGA level were selected. The advent of approaches for manipulation with the regulation of metabolic pathways provides an opportunity to overcome the undesirable direct relationship between the potato resistance to pests and the toxicity of its tubers. However, for such a fine regulation, a deep knowledge of the regulatory network of potato SGA biosynthesis is required. The purpose of this review is to summarize the information on the known SGA biosynthesis genes in plants and the results of the investigation of these genes in potato, as well as to consider the mechanisms of the SGA protective toxic action against pathogens and pests. The SGA biosynthesis is realized via the cytosolic mevalonate pathway and consists of three stages. The first two stages are required for the synthesis of primary metabolites, and lead to cycloartanol and cholesterol, respectively. Twelve enzymes are involved in the biosynthesis, and the half of them are involved in the biosynthesis of phytosterols, which is a branch of the first stage of this metabolic pathway. In the potato leaves with an excess of phytosterols, the synthesis switches to SGAs, increasing the content of the latter. In tubers, with an excess of SGA precursors, they are involved in the synthesis of lanosterol, supporting in this way the stable level of SGA. The importance of structural genes encoding the enzymes of the first two stages of biosynthesis does not allow us to consider them as a target for knockout in order to reduce the level of SGAs. However, information about the tissue-specific mechanisms of switching between the pathways of synthesis of SGA and other compounds having common precursors with SGAs can be used to manipulate the tissue-specific level of steroidal glycoalkaloids. At the third stage (the synthesis of glycoalkaloids from cholesterol), about 20 enzymes participate. In the potato genome, 14 corresponding genes were identified, 8 of which were studied in detail using reverse genetics approaches. As a promising target for reducing SGA levels in tubers, the genes encoding PGA enzymes (belonging to the CYP72 subfamily cytochrome-P450-dependent monooxygenases catalyzing the conversion of hydrocholesterol to trihydrocholesterol) and SGT (SGA glycosyltransferases that catalyze the conversion of solanidine to its toxic glycosylated derivatives α-solanine and α-chaconine) are considered. Cis-regulatory elements in the promoter regions of some glycoalkaloid biosynthesis genes, including elements responsible for tissue-specific expression, are described. The accumulated information provides the base for creating potato genotypes with tissue-specific regulation of SGAs, in which high levels of SGAs in leaves will remain to protect against pathogens and pests and, at the same time, the synthesis of toxic substances in tubers will be suppressed

About the Authors

K. A. Ivanova
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



S. V. Gerasimova
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



E. K. Khlestkina
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



References

1. Abdelkareem A., Thagun C., Nakayasu M., Mizutani M., Hashimoto T., Shoji T. Jasmonate­induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem. Biophys. Res. Commun. 2017;489(2):206­210. DOI 10.1016/j.bbrc.2017.05.132.

2. Alyokhin A., Vincent C., Giordanengo P. (Eds.). Insect Pests of Potato: Global Perspectives on Biology and Management. Academic Press, 2012.

3. Arnqvist L., Dutta P.C., Jonsson L., Sitbon F. Reduction of choleste rol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol. 2003; 131(4):1792­1799. DOI 10.1104/pp.102.018788.

4. Bushway A.A., Bushway R.J., Kim C.H. Isolation, partial purification and characterization of a potato peel α­solanine cleaving glycosidase. Am. Potato J. 1990;67(4):233­238. DOI 10.1007/BF02987264.

5. Cantwell M. A review of important facts about potato glycoalkaloids. Perishables Handling Newslett. 1996;87:26­27.

6. Cárdenas P.D., Sonawane P.D., Heinig U., Bocobza S.E., Burdman S., Aharoni A. The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism. Phytochemistry. 2015;113:24­32. DOI 10.1016/j.phytochem.2014.12.010.

7. Cárdenas P.D., Sonawane P.D., Pollier J., Bossche R.V., Dewangan V., Weithorn E., Tal L., Meir S., Rogachev I., Malitsky S., Giri A.P., Goossens A., Burdman S., Aharoni A. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 2016;7:10654. DOI 10.1038/ncomms10654.

8. Chen Y., Li S., Sun F., Han H., Zhang X., Fan Y., Tay G., Zhou Y. In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants. Pharm. Biol. 2010;48(9):1018­1024. DOI 10.3109/13880200903440211.

9. Choi E., Koo S. Anti­nociceptive and anti­inflammatory effects of the ethanolic extract of potato (Solanum tuberlosum). Food Agric. Immunol. 2005;16(1):29­39. DOI 10.1080/09540100500064320.

10. Delporte C., Backhouse N., Negrete R., Salinas P., Rivas P., Cassels B.K., Feliciano A.S. Antipyretic, hypothermic and antiinflammatory activities and metabolites from Solanum ligustrinum Lood. Phytother. Res. 1998;12(2):118­122. DOI 10.1002/(SICI)1099­1573(199803)12:2<118::AID­PTR207>3.0.CO;2­U.

11. Filadelfi M.A., Zitnak A. Preparation of chaconines by enzymic hydrolysis of potato berry alkaloids. Phytochemistry. 1982;21(1):250­251. DOI 10.1016/0031­9422(82)80067­8.

12. Fitzpatrick T.J., Herb S.F., Osman S.F., McDermott J.A. Potato glycoalkaloids: increases and variations of ratios in aged slices over prolonged storage. Am. Potato J. 1977;54(11):539­544. DOI 10.1007/BF02852221.

13. Flanders K.L., Hawkes J.G., Radcliffe E.B., Lauer F.I. Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica. 1992;61(2):83­111. DOI 10.1007/BF00026800.

14. Friedman M. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J. Agric. Food Chem. 2006;54(23):8655­8681. DOI 10.1021/jf061471t.

15. Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet. 2013;29(4):248­256. DOI 10.1016/j.tig.2012.11.006.

16. Ginzberg I., Tokuhisa J.G., Veilleux R.E. Potato steroidal glycoalkaloids: biosynthesis and genetic manipulation. Potato Res. 2009; 52(1):1­15. DOI 10.1007/s11540­008­9103­4.

17. Guntner C., Vazquez A., Gonzalez G., Usubillaga A., Ferreira F., Moyna P. Effect of Solanum glycoalkaloids on potato aphid, Macrosiphum euphorbiae: Part II. J. Chem. Ecol. 2000;26(5):1113­1122. DOI 10.1023/A:1005471624833.

18. Haase N.U. Glycoalkaloid concentration in potato tubers related to storage and consumer offering. Potato Res. 2010;53(4):297­307. DOI 10.1007/s11540­010­9162­1.

19. Heftmann E. Biogenesis of steroids in Solanaceae. Phytochemistry. 1983;22(9):1843­1860. DOI 10.1016/0031­9422(83)80001­6.

20. Hirsch C.D., Hamilton J.P., Childs K.L., Cepela J., Crisovan E., Vaillancourt B., Hirsch C.N., Habermann M., Neal B., Buell C.R. Spud DB: A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome. 2014;7(1). DOI 10.3835/plantgenome2013.12.0042.

21. Itkin M., Heinig U., Tzfadia O., Bhide A.J., Shinde B., Cárdenas P.D., Bocobza S.E., Unger T., Malitsky S., Finkers R., Tikunov Y., Bovy A., Chikate Y., Singh P., Rogachev I., Beekwilder J., Giri A.P., Aharoni A. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science. 2013;341(6142):175179. DOI 10.1126/science.1240230.

22. Kenny O.M., Brunton N.P., Rai D.K., Collins S.G., Jones P.W., Maguire A.R., O’Brien N.M. Cytotoxic and apoptotic potential of potato glycoalkaloids in a number of cancer cell lines. J. Agr. Sci. Appl. 2013;2(4):184­192. DOI 10.14511/jasa.2013.020401.

23. Kozukue N., Yoon K.S., Byun G.I., Misoo S., Levin C.E., Friedman M. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. J. Agric. Food Chem. 2008;56(24):11920­11928. DOI 10.1021/jf802631t.

24. Krits P., Fogelman E., Ginzberg I. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta. 2007; 227(1):143­150. DOI 10.1007/s00425­007­0602­3.

25. Kumar A., Fogelman E., Weissberg M., Tanami Z., Veilleux R.E., Ginzberg I. Lanosterol synthase­like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta. 2017;246(6): 1189­1202. DOI 10.1007/s00425­017­2763­z.

26. Lorenzen J.H., Balbyshev N.F., Lafta A.M., Casper H., Tian X., Sagredo B. Resistant potato selections contain leptine and inhibit development of the Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2001;94(5):1260­1267. DOI 10.1603/0022­049394.5.1260.

27. Manrique­Carpintero N.C., Tokuhisa J.G., Ginzberg I., Holliday J.A., Veilleux R.E. Sequence diversity in coding regions of candidate genes in the glycoalkaloid biosynthetic pathway of wild potato species. G3 Genes Genom. Genet. 2013;3(9):1467­1479. DOI 10.1534/g3.113.007146.

28. Mariot R.F., De Oliveira L.A., Voorhuijzen M.M., Staats M., Hutten R.C., van Dijk J.P., Kok E.J., Frazzon J. Characterization and transcriptional profile of genes involved in glycoalkaloid biosynthesis in new varieties of Solanum tuberosum L. J. Agric. Food Chem. 2016;64(4):988­996. DOI 10.1021/acs.jafc.5b05519.

29. McCue K.F. Potato glycoalkaloids, past present and future. Fruit Veget. Cereal Sci. Biotechn. 2009;3(7):65­71.

30. McCue K.F., Allen P.V., Shepherd L.V., Blake A., Whitworth J., Maccree M.M., Rockhold D.R., Stewart D., Davies H.V., Belknap W.R. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry. 2006;67(15):1590­1597. DOI 10.1016/j.phytochem.2005.09.037.

31. McCue K.F., Allen P.V., Shepherd L.V., Blake A., Maccree M.M., Rockhold D.R., Novy R.G., Stewart D., Davies H.V., Belknap W.R. Potato glycosterol rhamnosyltransferase, the terminal step in triose side­chain biosynthesis. Phytochemistry. 2007;68(3):327­334. DOI 10.1016/j.phytochem.2006.10.025.

32. McCue K.F., Breksa A., Vilches A., Belknap W.R. Modification of potato steroidal glycoalkaloids with silencing RNA constructs. Am. J. Potato Res. Online 2017;1­6. DOI 10.1007/s12230­017­9609­x.

33. Mitchell B.K., Harrison G.D. Effects of Solanum glycoalkaloids on chemosensilla in the Colorado potato beetle. J. Chem. Ecol. 1985; 11(1):73­83. DOI 10.1007/BF00987607.

34. Nikolic N.C., Stankovic M.Z. Hydrolysis of glycoalkaloids from Solanum tuberosum L. haulm by enzymes present in plant material and by enzyme preparation. Potato Res. 2005;48(1):25­33. DOI 10.1007/BF02733679.

35. Paudel J.R., Davidson C., Song J., Maxim I., Aharoni A., Tai H.H. Pathogen and pest responses are altered due to rnai­mediated knockdown of GLYCOALKALOID METABOLISM 4 in Solanum tuberosum. Mol. Plant­Microbe Interact. 2017;30(11):876­885. DOI 10.1094/MPMI­02­17­0033­R.

36. Pelletier Y., Tai G.C.C. Genotypic variability and mode of action of Colorado potato beetle (Coleoptera: Chrysomelidae) resistance in seven Solanum species. J. Econ. Entomol. 2001;94(2):572­578. DOI 10.1603/0022­0493­94.2.572.

37. Rangarajan A., Miller A.R., Veilleux R.E. Leptine glycoalkaloids reduce feeding by Colorado potato beetle in diploid Solanum sp. hybrids. J. Am. Soc. Horticult. Sci. 2000;125(6):689­693.

38. Reddivari L., Vanamala J., Safe S.H., Miller (Jr.) J.C. The bioactive compounds α­chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr. Cancer. 2010;62(5):601­610. DOI 10.1080/01635580903532358.

39. Satoh T. Glycemic effects of solanine in rats. Jap. J. Pharmacol. 1967; 17(4):652­658.

40. Sawai S., Akashi T., Sakurai N., Suzuki H., Shibata D., Ayabe S.I., Aoki T. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Plant Cell Physiol. 2006; 47(5):673­677. DOI 10.1093/pcp/pcj032.

41. Sawai S., Ohyama K., Yasumoto S., Seki H., Sakuma T., Yamamoto T., Takebayashi Y., Kojima M., Sakakibara H., Aoki T., Muranaka T., Saito K., Umemoto N. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell. 2014;26(9):37633774. DOI 10.1105/tpc.114.130096.

42. Shepherd L.V.T., Hackett C.A., Alexander C.J., McNicol J.W., Sungurtas J.A., Stewart D., McCue K.F., Belknap W.R., Davies H.V. Modifying glycoalkaloid content in transgenic potato – Metabolome impacts. Food Chem. 2015;187:437­443. DOI 10.1016/j.foodchem.2015.04.111.

43. Sinden S.L., Sanford L.L., Osman S.F. Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense Bitter. Am. J. Potato Res. 1980;57(7):331­343. DOI 10.1007/BF02854028.

44. Sinden S.L., Sanford L.L., Webb R.E. Genetic and environmental control of potato glycoalkaloids. Am. J. Potato Res. 1984;61(3):141156. DOI 10.1007/BF02854035.

45. Smith D.B., Roddick J.G., Jones J.L. Potato glycoalkaloids: some unanswered questions. Trends Food Sci. Technol. 1996;7(4):126­131. DOI 10.1016/0924­2244(96)10013­3.

46. Sonawane P.D., Pollier J., Panda S., Szymanski J., Massalha H., Yona M., Unger T., Malitsky S., Arendt P., Pauwels L., AlmekiasSiegl E., Rogachev I., Meir S., Cárdenas P.D., Masri A., Petrikov M., Schaller H., Schaffer A.A., Kamble A., Giri A.P., Goossens A., Aharoni A. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants. 2016;3:16205. DOI 10.1038/nplants.2016.205.

47. Tingey W.M. Glycoalkaloids as pest resistance factors. Am. Potato J. 1984;61(3):157­167. DOI 10.1007/BF02854036.

48. Umemoto N., Nakayasu M., Ohyama K., Yotsu­Yamashita M., Mizutani M., Seki H., Saito K., Muranaka T. Two cytochrome p450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol. 2016;171(4): 2458­2467. DOI 10.1104/pp.16.00137.


Review

Views: 930


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)