USING THE METHODS OF SYSTEMS BIOLOGY FOR PREDICTING PERSPECTIVE TARGET GENES TO SELECT C3 AND C4 CEREALS FOR OXIDATIVE STRESS RESISTANCE
https://doi.org/10.18699/VJ18.339
Abstract
Reactive oxygen species (ROS) are some of the most damaging factors for living systems. Cells produce ROS during normal metabolism reactions, but ROS production increases under stressful conditions. Improving the antioxidant system in cultivated plants will increase their tolerance to abiotic stresses, such as salinity, drought and cold. However, the biochemical components of the system are redundant, for each reaction is catalyzed by a series of enzymes encoded by different genes. Choosing the most perspective components of this system will help speed up evaluating the optimal breeding strategy for improving abiotic stress tolerance in economically valuable plants. In the present research article, we present the results of an integrative analysis of evolution- and expressionrelated characteristics. The work was carried out on a series of genes that belong to 4 functional groups (APX, GPX, SOD and CAT) of enzymatic components of the antioxidant defense system in six species of C3 cereal plants and 3 species of C4 cereal plants. As a result, 25 groups of orthologous genes were evaluated and described. The highest gene expression level and the greatest pressure of purifying selection were found to characterize six groups. These genes were chosen for further verification and use in breeding. Because these genes undergo the most conservative evolution and have the highest level of mRNA expression, we may assume that they contribute a lot to the antioxidant system functioning of the C3 and C4 cereal plants studied. We have shown that the integration of evolutionary characteristics and expression data represents a promising approach to predict target genes for plant breeding.
Keywords
About the Authors
A. V. DoroshkovRussian Federation
A. V. Bobrovskikh
Russian Federation
References
1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403-410. DOI 10.1016/S0022-2836(05)80360-2.
2. Arvestad L. Efficient methods for estimating amino acid replacement rates. J. Mol. Evol. 2006;62(6):663-673. DOI 10.1007/s00239-004-0113-9.
3. Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. DOI 10.3389/fenvs.2014.00053.
4. De La Torre A.R., Lin Y., Van de Peer Y., Ingvarsson P.K. Genomewide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families. Genome Biol. Evol. 2015;7(4):1002-1015. DOI 10.1093/gbe/evv044.
5. Ehleringer J.R., Sage R.F., Flanagan L.B., Pearcy R.W. Climate change and the evolution of C4 photosynthesis. Trends Ecol. Evol. 1991;6(3):95-99. DOI 10.1016/0169-5347(91)90183-X.
6. Gill S.S., Tajrishi M., Madan M., Tuteja N. A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol. Biol. 2013;82(1-2):1-22. DOI 10.1007/s11103-013-0031-6.
7. Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48(12):909-930. DOI 10.1016/j.plaphy.2010.08.016.
8. Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003; 52(5):696-704. DOI 10.1080/10635150390235520.
9. Gunbin K.V., Suslov V.V., Genaev M.A., Afonnikov D.A. Computer system for analysis of molecular evolution modes (SAMEM): analysis of molecular evolution modes at deep inner branches of the phylogenetic tree. In Silico Biol. 2012;11(3,4):109-123. DOI 10.3233/ISB-2012-0446.
10. Hammer Ø., Harper D.A.T., Ryan P.D. Paleontological statistics software: Package for education and data analysis. Palaeontol. Electronica. 2001;4. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
11. Hammond-Kosack K.E., Jones J.D. Resistance gene-dependent plant defense responses. Plant Cell. 1996;8(10):1773-1791.
12. Han M.V., Zmasek C.M. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics. 2009;10(1):356. DOI 10.1186/1471-2105-10-356.
13. Hatch M.D. C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta – Rev. Bioenergetics. 1987;895(2):81-106. DOI 10.1016/S0304-4173(87)80009-5.
14. Hatch M.D. C4 photosynthesis: discovery and resolution. In: Govindjee, Beatty J.T., Gest H., Allen J.F. (Eds.). Discoveries in Photosynthesis. Springer, 2005:875-880.
15. Henikoff S., Henikoff J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA. 1992;89(22):10915-10919.
16. Hohmann-Marriott M.F., Blankenship R.E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 2011;62(1):515-548. DOI 10.1146/annurev-arplant-042110-103811.
17. Ingvarsson P.K. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol. Biol. Evol. 2007;24(3):836-844. DOI 10.1093/molbev/msl212.
18. Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., International Wheat Genome Sequencing Consortium, Yang H., Liu X., He Z., Mao L., Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496:91-95. DOI 10.5524/100054.
19. Karpilov Y.S. The distribution of radioactive carbon 14 amongst the products of photosynthesis of maize. Trudy Kazanskogo sel’skokhozyaystvennogo instituta = Works of the Kazan Agricultural Institute. 1960;41(1):15-24. (in Russian)
20. Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008;9(4):286-298. DOI 10.1093/bib/bbn013.
21. Khaliq A., Zia-ul-Haq M., Ali F., Aslam F., Matloob A., Navab A., Hussain S. Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. CLEAN – Soil, Air, Water. 2015;43(8):1248-1258. DOI 10.1002/clen.201400854.
22. Li W.L., Faris J.D., Chittoor J.M., Leach J.E., Hulbert S.H., Liu D.J., Chen P.D., Gill B.S. Genomic mapping of defense response genes in wheat. Theor. Appl. Genet. 1999;98(2):226-233. DOI 10.1007/s001220051062.
23. Li W.H., Yang J., Gu X. Expression divergence between duplicate genes. Trends Genet. 2005;21(11):602-607. DOI 10.1016/j.tig.2005.08.006.
24. Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490-498. DOI 10.1016/j.tplants.2004.08.009.
25. Neuman P.R., Hart G.E. Genetic control of the mitochondrial form of superoxide dismutase in hexaploid wheat. Biochem. Genet. 1986; 24(5-6):435-446.
26. Noctor G., Foyer C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 1998;49(1):249-279. DOI 10.1146/annurev.arplant.49.1.249.
27. Orozco-Cardenas M., Ryan C.A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA. 1999;96(11):6553-6557. DOI 10.1073/pnas.96.11.6553.
28. Osipova S., Permyakov A., Permyakova M., Pshenichnikova T., Verkhoturov V., Rudikovsky A., Rudikovskaya E., Shishparenok A., Doroshkov A., Börner A. Regions of the bread wheat D genome associated with variation in key photosynthesis traits and shoot biomass under both well watered and water deficient conditions. J. Appl. Genet. 2016;57(2):151-163. DOI 10.1007/s13353-015-0315-4.
29. Peremyslov V.V., Mockler T.C., Filichkin S.A., Fox S.E., Jaiswal P., Makarova K.S., Koonin E.V., Dolja V.V. Expression, splicing, and evolution of the myosin gene family in plants. Plant Physiol. 2011; 155(3):1191-1204. DOI 10.1104/pp.110.170720.
30. Rambaut A. FigTree, version 1.4: tree figure drawing tool. 2008. http://tree.bio.ed.ac.uk/software/figtree/.
31. Reynolds M., Foulkes M.J., Slafer G.A., Berry P., Parry M.A., Snape J.W., Angus W.J. Raising yield potential in wheat. J. Exp. Bot. 2009;60(7):1899-1918. DOI 10.1093/jxb/erp016.
32. Sage R.F., Sage T.L., Kocacinar F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 2012;63:19-47. DOI 10.1146/annurev-arplant-042811-105511.
33. Trethowan R.M., Mujeeb-Kazi A. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 2008;48(4):1255-1265. DOI 10.2135/cropsci2007.08.0477.
34. Wang X., Cai J., Liu F., Dai T., Cao W., Wollenweber B., Jiang D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol. Biochem. 2014;74:185-192. DOI 10.1016/j.plaphy.2013.11.014.
35. Wright S.I., Yau C.K., Looseley M., Meyers B.C. Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol. Biol. Evol. 2004;21(9):1719-1726. DOI 10.1093/molbev/msh191.
36. Wu G., Wilen R.W., Robertson A.J., Gusta L.V. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol. 1999;120(2):513-520. DOI 10.1104/pp.120.2.513.
37. Zhang J. Evolution by gene duplication: an update. Trends Ecol. Evol. 2003;18(6):292-298. DOI 10.1016/S0169-5347(03)00033-8.
38. Zmasek C.M. Archaeopteryx: visualization, analysis, and editing of phylogenetic trees. 2015. Available at: https://sites.google.com/site/cmzmasek/home/software/archaeopteryx.