Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Церебральные органоиды – перспективная модель в клеточных технологиях

https://doi.org/10.18699/VJ18.344

Аннотация

Развитие головного мозга человека представляет собой сложный многоэтапный процесс, включающий образование различных типов нейральных клеток и их взаимодействия. Многие фундаментальные механизмы нейрогенеза установлены благодаря изучению модельных животных. Однако значительные структурные различия головного мозга по сравнению с другими животными не позволяют рассмотреть все аспекты формирования головного мозга у человека, которые могут играть решающую роль для развития его уникальных когнитивных способностей. Новая технология трехмерных церебральных органоидов открывает исследователям уникальную возможность моделировать ранние этапы нейрогенеза человека. В обзоре рассматриваются технология получения трехмерных церебральных органоидов, примеры ее успешного внедрения в фундаментальные и прикладные исследования, имеющиеся проблемы, а также перспективы ее развития.

Об авторе

Т. А. Шнайдер
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Abud E.M., Ramirez R.N., Martinez E.S., Healy L.M., Nguyen C.H.H., Newman S.A., Yeromin A.V., Scarfone V.M., Marsh S.E., Fimbres C., Caraway C.A., Fote G.M., Madany A.M., Agrawal A., Kayed R., Gylys K.H., Cahalan M.D., Cummings B.J., Antel J.P., Mortazavi A., Carson M.J., Poon W.W., Blurton-Jones M. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94(2):278-293.e9. DOI 10.1016/j.neuron.2017.03.042.

2. Ananiev G., Williams E.C., Li H., Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011; 6(9):e25255. DOI 10.1371/journal.pone.0025255.

3. Anthony T.E., Klein C., Fishell G., Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron. 2004;41(6):881-890.

4. Bagley J.A., Reumann D., Bian S., Lévi-Strauss J., Knoblich J.A. Fused cerebral organoids model interactions between brain regions. Nat. Methods. 2017;14(7):743-751. DOI 10.1038/nmeth.4304.

5. Barrows N.J., Campos R.C., Powell S.T., Prasanth K.R., Schott-Lerner G., Soto-Acosta R., Galarza-Muñoz G., McGrath E.L., UrrabazGarza R., Gao J., Wu P., Menon R., Saade G., Fernandez-Salas I., Rossi S.L., Vasilakis N., Routh A., Bradrick S.S., Garcia-Blanco M. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 2016;20(2):259-270. DOI 10.1016/j.chom. 2016.07.004.

6. Bershteyn M., Nowakowski T.J., Pollen A.A., Di Lullo E., Nene A., Wynshaw-Boris A., Kriegstein A.R. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell. 2017;20(4):435449.e4. DOI 10.1016/j.stem.2016.12.007.

7. Betizeau M., Cortay V., Patti D., Pfister S., Gautier E., Bellemin-Mé- nard A., Afanassieff M., Huissoud C., Douglas R.J., Kennedy H., Dehay C. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron. 2013;80(2): 442-457. DOI 10.1016/j.neuron.2013.09.032.

8. Bhatia S.N., Ingber D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014;32(8):760-772. DOI 10.1038/nbt.2989.

9. Cai J., Yang M., Poremsky E., Kidd S., Schneider J.C., Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev. 2010;19(7):1017-1023. DOI 10.1089/scd.2009.0319.

10. Camp J.G., Badsha F., Florio M., Kanton S., Gerber T., WilschBräuninger M., Lewitus E., Sykes A., Hevers W., Lancaster M., Knoblich J.A., Lachmann R., Pääbo S., Huttner W.B., Treutlein B. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA. 2015; 112(51):15672-15677. DOI 10.1073/pnas.1520760112.

11. Chen C., Jiang P., Xue H., Peterson S.E., Tran H.T., McCann A.E., Parast M.M., Li S., Pleasure D.E., Laurent L.C., Loring J.F., Liu Y., Deng W. Role of astroglia in Down’s syndrome revealed by patientderived human-induced pluripotent stem cells. Nat. Commun. 2014; 5:4430. DOI 10.1038/ncomms5430.

12. Cugola F.R., Fernandes I.R., Russo F.B., Freitas B.C., Dias J.L., Guimarães K.P., Benazzato C., Almeida N., Pignatari G.C., Romero S., Polonio C.M., Cunha I., Freitas C.L., Brandão W.N., Rossato C., Andrade D.G., Faria D.E., Garcez A.T., Buchpigel C.A., Braconi C.T., Mendes E., Sall A.A., Zanotto P.M., Peron J.P., Muotri A.R., Beltrão-Braga P.C. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016;534(7606):267-271. DOI 10.1038/nature18296.

13. Dang J., Tiwari S.K., Lichinchi G., Qin Y., Patil V.S., Eroshkin A.M., Rana T.M. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 2016;19(2):258-265. DOI 10.1016/j.stem.2016. 04.014.

14. Delvecchio R., Higa L.M., Pezzuto P., Valadão A.L., Garcez P.P., Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses. 2016;8(12). DOI 10.3390/v8120322.

15. Dezonne R.S., Sartore R.C., Nascimento J.M., Saia-Cereda V.M., Romão L.F., Alves-Leon S.V., de Souza J.M., Martins-de-Souza D., Rehen S.K., Gomes F.C. Derivation of functional human astrocytes from cerebral organoids. Sci. Rep. 2017;7:45091. DOI 10.1038/ srep45091.

16. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156.

17. Fietz S.A., Kelava I., Vogt J., Wilsch-Bräuninger M., Stenzel D., Fish J.L., Corbeil D., Riehn A., Distler W., Nitsch R., Huttner W.B. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 2010;13(6):690699. DOI 10.1038/nn.2553.

18. Gabriel E., Ramani A., Karow U., Gottardo M., Natarajan K., Gooi L.M., Goranci-Buzhala G., Krut O., Peters F., Nikolic M., Kuivanen S., Korhonen E., Smura T., Vapalahti O., Papantonis A., Schmidt-Chanasit J., Riparbelli M., Callaini G., Krönke M., Utermöhlen O., Gopalakrishnan J. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell. 2017;20(3):397-406.e5. DOI 10.1016/j.stem.2016.12.005.

19. Gabriel E., Wason A., Ramani A., Gooi L.M., Keller P., Pozniakovsky A., Poser I., Noack F., Telugu N.S., Calegari F., Šarić T., Hescheler J., Hyman A.A., Gottardo M., Callaini G., Alkuraya F.S., Gopalakrishnan J. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 2016;35(8):803-819. DOI 10.15252/embj.201593679.

20. Garcez P.P., Loiola E.C., Madeiro da Costa R., Higa L.M., Trindade P., Delvecchio R., Nascimento J.M., Brindeiro R., Tanuri A., Rehen S.K. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816-818. DOI 10.1126/ science.aaf6116.

21. Geschwind D.H., Rakic P. Cortical evolution: judge the brain by its cover.Neuron. 2013;80(3):633-647. DOI 10.1016/j.neuron.2013.10.045.

22. Ghodsizadeh A., Taei A., Totonchi M., Seifinejad A., Gourabi H., Pournasr B., Aghdami N., Malekzadeh R., Almadani N., Salekdeh G.H., Baharvand H. Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev. 2010;6(4):622-632. DOI 10.1007/ s12015-010-9189-3.

23. Giandomenico S.L., Lancaster M.A. Probing human brain evolution and development in organoids. Curr. Opin. Cell Biol. 2017;44: 36-43. DOI 10.1016/j.ceb.2017.01.001.

24. Giobbe G.G., Michielin F., Luni C., Giulitti S., Martewicz S., Dupont S., Floreani A., Elvassore N. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods. 2015;12(7): 637-640. DOI 10.1038/nmeth.3411.

25. Götz M., Huttner W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell. Biol. 2005;6(10):777-788. DOI 10.1038/nrm1739.

26. Guo J.U., Su Y., Shin J.H., Shin J., Li H., Xie B., Zhong C., Hu S., Le T., Fan G., Zhu H., Chang Q., Gao Y., Ming G.L., Song H. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 2014;17(2):215-222. DOI 10.1038/nn.3607.

27. Hamel R., Dejarnac O., Wichit S., Ekchariyawat P., Neyret A., Luplertlop N., Perera-Lecoin M., Surasombatpattana P., Talignani L., Thomas F., Cao-Lormeau V.M., Choumet V., Briant L., Desprès P., Amara A., Yssel H., Missé D. Biology of Zika virus infection in human skin cells. J. Virol. 2015;89(17):8880-8896. DOI 10.1128/JVI.00354-15.

28. Harrison R.G. Observations on the living developing nerve fiber. Exp. Biol. Med. 1906;7:140-143.

29. Haubensak W., Attardo A., Denk W., Huttner W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA. 2004;101(9): 3196-3201. DOI 10.1073/pnas.0308600100.

30. He Y., Ecker J.R. Non-CG methylation in the human genome. Annu. Rev. Genomics Hum. Genet. 2015;16:55-77. DOI 10.1146/annurevgenom-090413-025437.

31. Howard B.M., Mo Z., Filipovic R., Moore A.R., Antic S.D., Zecevic N. Radial glia cells in the developing human brain. Neuroscientist. 2008;14(5):459-473. DOI 10.1177/1073858407313512.

32. Huang L., Chen M., Zhang W., Sun X., Liu B., Ge J. Retinoi d acid and taurine promote NeuroD1-induced differentiation of induced pluripotent stem cells into retinal ganglion cells. Mol. Cell. Biochem. 2017. DOI 10.1007/s11010-017-3114-x.

33. Iefremova V., Manikakis G., Krefft O., Jabali A., Weynans K., WilkensR., Marsoner F., Brändl B., Müller F.J., Koch P., Ladewig J. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker cyndrome. Cell Rep. 2017;19(1):50-59. DOI 10.1016/j.celrep.2017.03.047.

34. Itskovitz-Eldor J., Schuldiner M., Karsenti D., Eden A., Yanuka O., Amit M., Soreq H., Benvenisty N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 2000;6(2):88-95.

35. Jang H.S., Shin W.J., Lee J.E., Do J.T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel). 2017;8(6). DOI 10.3390/genes8060148.

36. Javaherian A., Kriegstein A. A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb. Cortex. 2009; 19(Suppl. 1):i70-i77. DOI 10.1093/cercor/bhp029.

37. Jiménez D., López-Mascaraque L.M., Valverde F., De Carlos J.A. Tangential migration in neocortical development. Dev. Biol. 2002; 244(1):155-169. DOI 10.1006/dbio.2002.0586.

38. Kadoshima T., Sakaguchi H., Nakano T., Soen M., Ando S., Eiraku M., Sasai Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. USA. 2013;110(50):20284-20289. DOI 10.1073/pnas.1315710110.

39. Kang H., Shih Y.R., Nakasaki M., Kabra H., Varghese S. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci. Adv. 2016;2(8):e1600691. DOI 10.1126/ sciadv.1600691.

40. Kelava I., Lancaster M.A. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev. Biol. 2016; 420(2):199-209. DOI 10.1016/j.ydbio.2016.06.037.

41. Kennedy T.E., Serafini T., de la Torre J.R., Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 1994;78(3):425-435.

42. Kim C., Wong J., Wen J., Wang S., Wang C., Spiering S., Kan N.G., Forcales S., Puri P.L., Leone T.C., Marine J.E., Calkins H., Kelly D.P., Judge D.P., Chen H.S. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105110. DOI 10.1038/nature11799.

43. Kim J.M., Moon S.H., Lee S.G., Cho Y.J., Hong K.S., Lee J.H., Lee H.J., Chung H.M. Assessment of differentiation aspects by the morphological classification of embryoid bodies derived from human embryonic stem cells. Stem Cells Dev. 2011;20(11):1925-1935. DOI 10.1089/scd.2010.0476.

44. Lancaster M.A., Corsini N.S., Wolfinger S., Gustafson E.H., PhillipsA.W., Burkard T.R., Otani T., Livesey F.J., Knoblich J.A. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 2017;35(7):659-666. DOI 10.1038/nbt.3906.

45. Lancaster M.A., Knoblich J.A. Spindle orientation in mammalian cerebral cortical development. Curr. Opin. Neurobiol. 2012;22(5):737746. DOI 10.1016/j.conb.2012.04.003.

46. Lancaster M.A., Knoblich J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014;9(10):2329-2340. DOI 10.1038/nprot.2014.158.

47. Lancaster M.A., Renner M., Martin C.A., Wenzel D., Bicknell L.S., Hurles M.E., Homfray T., Penninger J.M., Jackson A.P., Knoblich J.A. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. DOI 10.1038/nature12517.

48. Lange C., Turrero G.M., Decimo I., Bifari F., Eelen G., Quaegebeur A., Boon R., Zhao H., Boeckx B., Chang J., Wu C., Le Noble F., Lambrechts D., Dewerchin M., Kuo C.J., Huttner W.B., Carmeliet P. Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J. 2016;35(9):924-941. DOI 10.15252/embj.201592372.

49. Lapham L.W., Markesbery W.R. Human fetal cerebellar cortex: organization and maturation of cells in vitro. Science. 1971;l173(3999): 829-832.

50. Li C., Deng Y.Q., Wang S., Ma F., Aliyari R., Huang X.Y., Zhang N.N., Watanabe M., Dong H.L., Liu P., Li X.F., Ye Q., Tian M., Hong S., Fan J., Zhao H., Li L., Vishlaghi N., Buth J.E., Au C., Liu Y., Lu N., Du P., Qin F.X., Zhang B., Gong D., Dai X., Sun R., Novitch B.G., Xu Z., Qin C.F., Cheng G. 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model. Immunity. 2017;46(3):446-456. DOI 10.1016/j. immuni.2017.02.012.

51. Li Y., Muffat J., Omer A., Bosch I., Lancaster M.A., Sur M., Gehrke L., Knoblich J.A., Jaenisch R. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell. 2017;20(3):385-396.e3. DOI 10.1016/j.stem.2016.11.017.

52. Lindborg B.A., Brekke J.H., Vegoe A.L., Ulrich C.B., Haider K.T., Subramaniam S., Venhuizen S.L., Eide C.R., Orchard P.J., Chen W., Wang Q., Pelaez F., Scott C.M., Kokkoli E., Keirstead S.A., Dutton J.R., Tolar J., O’Brien T.D. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl. Med. 2016;5(7):970-979. DOI 10.5966/sctm.2015-0305.

53. Lister R., Mukamel E.A., Nery J.R., Urich M., Puddifoot C.A., Johnson N.D., Lucero J., Huang Y., Dwork A.J., Schultz M.D., Yu M., Tonti-Filippini J., Heyn H., Hu S., Wu J.C., Rao A., Esteller M., He C., Haghighi F.G., Sejnowski T.J., Behrens M.M., Ecker J.R. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905. DOI 10.1126/science. 1237905.

54. Luo C., Lancaster M.A., Castanon R., Nery J.R., Knoblich J.A., Ecker J.R. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 2016;17(12):3369-3384. DOI 10.1016/j.celrep.2016.12.001.

55. Malik S., Vinukonda G., Vose L.R., Diamond D., Bhimavarapu B.B., Hu F., Zia M.T., Hevner R., Zecevic N., Ballabh P. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J. Neurosci. 2013;33(2):411-423. DOI 10.1523/ JNEUROSCI.4445-12.2013.

56. Marchese M., Conti V., Valvo G., Moro F., Muratori F., Tancredi R., Santorelli F.M., Guerrini R., Sicca F. Autism-epilepsy phenotype with macrocephaly suggests PTEN, but not GLIALCAM, genetic screening. BMC Med. Genet. 2014;15:26. DOI 10.1186/1471-2350-15-26.

57. Mariani J., Coppola G., Zhang P., Abyzov A., Provini L., Tomasini L., Amenduni M., Szekely A., Palejev D., Wilson M., Gerstein M., Grigorenko E.L., Chawarska K., Pelphrey K.A., Howe J.R., Vaccarino F.M. FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2): 375-390. DOI 10.1016/j.cell.2015.06.034.

58. Marín O., Müller U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr. Opin. Neurobiol. 2014;26:132141. DOI 10.1016/j.conb.2014.01.015.

59. Mellios N., Feldman D.A., Sheridan S.D., Ip J.P.K., Kwok S., Amoah S.K., Rosen B., Rodriguez B.A., Crawford B., Swaminathan R., Chou S., Li Y., Ziats M., Ernst C., Jaenisch R., Haggarty S.J., Sur M. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling. 2017; Mol. Psychiatry. DOI 10.1038/mp.2017.86.

60. Miyata T., Kawaguchi A., Saito K., Kawano M., Muto T., Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development. 2004;131(13):31333145. DOI 10.1242/dev.01173.

61. Monzel A.S., Smits L.M., Hemmer K., Hachi S., Moreno E.L., van Wuellen T., Jarazo J., Walter J., Brüggemann I., Boussaad I., Berger E., Fleming R.M.T., Bolognin S., Schwamborn J.C. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Reports. 2017;8 (5):1144-1154. DOI 10.1016/j. stemcr.2017.03.010.

62. Moon H.M., Youn Y.H., Pemble H., Yingling J., Wittmann T., Wynshaw-Boris A. LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex. Hum. Mol. Genet. 2014; 23(2):449-466. DOI 10.1093/hmg/ddt436.

63. Mora-Bermúdez F., Badsha F., Kanton S., Camp J.G., Vernot B., Köhler K., Voigt B., Okita K., Maricic T., He Z., Lachmann R., Pääbo S., Treutlein B., Huttner W.B. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife. 2016;5:e18683. DOI 10.7554/eLife.18683.

64. Moreno E.L., Hachi S., Hemmer K., Trietsch S.J., Baumuratov A.S., Hankemeier T., Vulto P., Schwamborn J.C., Fleming R.M. Differen-tiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab. Chip. 2015;15(11):24192428. DOI 10.1039/c5lc00180c.

65. Mou H., Zhao R., Sherwood R., Ahfeldt T., Lapey A., Wain J., Sicilian L., Izvolsky K., Musunuru K., Cowan C., Rajagopal J. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012; 10(4):385-397. DOI 10.1016/j.stem.2012.01.018.

66. Muguruma K., Nishiyama A., Kawakami H., Hashimoto K., Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10(4):537-550. DOI 10.1016/j.celrep.2014.12.051.

67. Nowakowski T.J., Pollen A.A., Di Lullo E., Sandoval-Espinosa C., Bershteyn M., Kriegstein A.R. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18(5):591-596. DOI 10.1016/j.stem.2016.03.012.

68. Onorati M., Li Z., Liu F., Sousa A.M., Nakagawa N., Li M., Dell’Anno M.T., Gulden F.O., Pochareddy S., Tebbenkamp A.T., Han W., Pletikos M., Gao T., Zhu Y., Bichsel C., Varela L., SzigetiBuck K., Lisgo S., Zhang Y., Testen A., Gao X.B., Mlakar J., Popovic M., Flamand M., Strittmatter S.M., Kaczmarek L.K., Anton E.S., Horvath T.L., Lindenbach B.D., Sestan N. Zika virus disrupts pPhospho-TBK1 localization and Mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 2016;16(10):2576-2592. DOI 10.1016/j.celrep.2016.08.038.

69. Paridaen J.T., Huttner W.B. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 2014;15(4):351-364. DOI 10.1002/embr.201438447.

70. Qian X., Nguyen H.N., Song M.M., Hadiono C., Ogden S.C., Hammack C., Yao B., Hamersky G.R., Jacob F., Zhong C., Yoon K.J., Jeang W., Lin L., Li Y., Thakor J., Berg D.A., Zhang C., Kang E., Chickering M., Nauen D., Ho C.Y., Wen Z., Christian K.M., Shi P.Y., Maher B.J., Wu H., Jin P., Tang H., Song H., Ming G.L. Brain-regionspecific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238-1254. DOI 10.1016/j.cell.2016.04.032.

71. Qiu X., Yang J., Liu T., Jiang Y., Le Q., Lu Y. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One. 2011;7(3):e32612. DOI 10.1371/journal. pone.0032612.

72. Quadrato G., Nguyen T., Macosko E.Z., Sherwood J.L., Min Yang S., Berger D.R., Maria N., Scholvin J., Goldman M., Kinney J.P., Boyden E.S., Lichtman J.W., Williams Z.M., McCarroll S.A., Arlotta P. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545(7652):48-53. DOI 10.1038/ nature22047.

73. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 2009;10(10):724-735. DOI 10.1038/ nrn2719.

74. Rapalska K., Szwabe M. Tangential migration of neocortical neurons in early human foetuses. Folia Morphol. (Warsz.). 2003;62(3):223-225.

75. Sacramento C.Q., de Melo G.R., de Freitas C.S., Rocha N., Hoelz L.V., Miranda M., Fintelman-Rodrigues N., Marttorelli A., Ferreira A.C., Barbosa-Lima G., Abrantes J.L., Vieira Y.R., Bastos M.M., de Mello Volotão E., Nunes E.P., Tschoeke D.A., Leomil L., Loiola E.C., Trindade P., Rehen S.K., Bozza F.A., Bozza P.T., Boechat N., Thompson F.L., de Filippis A.M., Brüning K., Souza T.M. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep. 2017;7:40920. DOI 10.1038/srep40920.

76. Sakaguchi H., Kadoshima T., Soen M., Narii N., Ishida Y., Ohgushi M., Takahashi J., Eiraku M., Sasai Y. Generation of functional hippocampal neurons from self-organizing human embryonic stem cellderived dorsomedial telencephalic tissue. Nat. Commun. 2015;6: 8896. DOI 10.1038/ncomms9896.

77. Sareen D., Gowing G., Sahabian A., Staggenborg K., Paradis R., Avalos P., Latter J., Ornelas L., Garcia L., Svendsen C.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J.Comp. Neurol. 2014;522(12):2707-2728. DOI 10.1002/cne.23578.

78. Schultz M.D., He Y., Whitaker J.W., Hariharan M., Mukamel E.A., Leung D., Rajagopal N., Nery J.R., Urich M.A., Chen H., Lin S., Lin Y., Jung I., Schmitt A.D., Selvaraj S., Ren B., Sejnowski T.J., Wang W., Ecker J.R. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523(7559):212216. DOI 10.1038/nature14465.

79. Schwartz M.P., Hou Z., Propson N.E., Zhang J., Engstrom C.J., Santos Costa V., Jiang P., Nguyen B.K., Bolin J.M., Daly W., Wang Y., Stewart R., Page C.D., Murphy W.L., Thomson J.A. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl. Acad. Sci. USA. 2015;112(40):12516-12521. DOI 10.1073/pnas.1516645112.

80. Seibler P., Graziotto J., Jeong H., Simunovic F., Klein C., Krainc D. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 2011;31(16):5970-5976. DOI 10.1523/JNEUROSCI.4441-10.2011.

81. Smart I.H., Dehay C., Giroud P., Berland M., Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex. 2002;12(1):37-53.

82. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024.

83. Takebe T., Enomura M., Yoshizawa E., Kimura M., Koike H., Ueno Y., Matsuzaki T., Yamazaki T., Toyohara T., Osafune K., Nakauchi H., Yoshikawa H.Y., Taniguchi H. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 2015;16(5):556-565. DOI 10.1016/j.stem.2015.03.004.

84. Tang H., Hammack C., Ogden S.C., Wen Z., Qian X., Li Y., Yao B., Shin J., Zhang F., Lee E.M., Christian K.M., Didier R.A., Jin P., Song H., Ming G.L. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587590. DOI 10.1016/j.stem.2016.02.016.

85. Thomas C.A., Tejwani L., Trujillo C.A., Negraes P.D., Herai R.H., Mesci P., Macia A., Crow Y.J., Muotri A.R. Modeling of TREX1dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;7;21(3):319-331.e8. DOI 10.1016/j.stem.2017.07.009.

86. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-1147.

87. Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., PauliBehn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555-567. DOI 10.1101/gr.147942.112.

88. Vasudevan A., Long J.E., Crandall J.E., Rubenstein J.L., Bhide P.G. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 2008;11(4):429439. DOI 10.1038/nn2074.

89. Wang P., Mokhtari R., Pedrosa E., Kirschenbaum M., Bayrak C., Zheng D., Lachman H.M. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol. Autism. 2017;8:11. DOI 10.1186/s13229-017-0124-1.

90. Wells M.F., Salick M.R., Wiskow O., Ho D.J., Worringer K.A., Ihry R.J., Kommineni S., Bilican B., Klim J.R., Hill E.J., Kane L.T., Ye C., Kaykas A., Eggan K. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cel Stem Cell. 2016;19(6):703-708. DOI 10.1016/j. stem.2016.11.011.

91. Xiang Y., Tanaka Y., Patterson B., Kang Y.J., Govindaiah G., Roselaar N., Cakir B., Kim K.Y., Lombroso A.P., Hwang S.M., Zhong M., Stanley E.G., Elefanty A.G., Naegele J.R., Lee S.H., Weissman S.M., Park I.H. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;7;21(3):383-398.e7. DOI 10.1016/j. stem.2017.07.007.

92. Yingling J., Youn Y.H., Darling D., Toyo-Oka K., Pramparo T., Hirotsune S., Wynshaw-Boris A. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell. 2008;132(3):474-486. DOI 10.1016/j.cell.2008.01.026.

93. Zhou T., Tan L., Cederquist G.Y., Fan Y., Hartley B.J., Mukherjee S., Tomishima M., Brennand K.J., Zhang Q., Schwartz R.E., Evans T., Studer L., Chen S. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell. 2017;21(2):274283.e5. DOI 10.1016/j.stem.2017.06.017.

94. Zhu Y., Wang L., Yu H., Yin F., Wang Y., Liu H., Jiang L., Qin J. In situ generation of human brain organoids on a micropillar array. Lab. Chip. 2017;22;17(17):2941-2950. DOI 10.1039/c7lc00682a.

95. Zmurko J., Marques R.E., Schols D., Verbeken E., Kaptein S.J., NeytsJ. The viral polymerase inhibitor 7-deaza-2’-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis. 2016;10(5):e0004695. DOI 10.1371/journal.pntd.0004695.


Рецензия

Просмотров: 1526


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)