Поиск микроРНК, потенциально задействованных в поддержании самообновления плюрипотентных клеток лабораторной крысы
https://doi.org/10.18699/VJ18.345
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Об авторах
В. В. ШерстюкРоссия
Новосибирск
С. П. Медведев
Россия
Новосибирск
М. Т. Ри
Россия
Новосибирск;
Вобурн, США
Ю. В. Вяткин
Россия
Новосибирск;
Вобурн, США
О. В. Сайк
Россия
Новосибирск
Д. Н. Штокало
Россия
Новосибирск;
Вобурн, США
С. М. Закиян
Россия
Новосибирск
Список литературы
1. Agarwal V., Bell G.W., Nam J.W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4. https://doi.org/10.7554/eLife.05005.
2. An J., Zheng Y., Dann C.T. Mesenchymal to epithelial transition mediated by CDH1 promotes spontaneous reprogramming of male germline stem cells to pluripotency. Stem Cell Reports. 2017;8(2):446459. https://doi.org/10.1016/j.stemcr.2016.12.006.
3. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-233. https://doi.org/10.1016/j.cell.2009.01.002.
4. Betel D., Wilson M., Gabow A., Marks D.S., Sander C. The microRNA. org resource: targets and expression. Nucleic Acids Res. 2008;36: D149-D153. https://doi.org/10.1093/nar/gkm995.
5. Buehr M., Meek S., Blair K., Yang J., Ure J., Silva J., McLay R., Hall J., Ying Q.L., Smith A. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;135(7):1287-1298. https://doi.org/10.1016/j.cell. 2008.12.007.
6. Calabrese J.M., Seila A.C., Yeo G.W., Sharp P.A. RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA. 2007;104(46):18097-18102. https://doi.org/10.1073/pnas. 0709193104.
7. Cao Y., Guo W.T., Tian S., He X., Wang X.W., Liu X., Gu K.L., Ma X., Huang D., Hu L., Cai Y., Zhang H., Wang Y., Gao P. miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO J. 2015;34(5):609-623. https://doi.org/10.15252/embj.201490441.
8. Chang H., Yi B., Ma R., Zhang X., Zhao H., Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci. Rep. 2016;6:22312. https://doi.org/10.1038/srep22312.
9. Chen J., Wang G., Lu C., Guo X., Hong W., Kang J., Wang J. Synergetic cooperation of microRNAs with transcription factors in iPS cell generation. PLoS One. 2012;7(7):e40849. https://doi.org/10.1371/journal. pone.0040849.
10. Essletzbichler P., Konopka T., Santoro F., Chen D., Gapp B.V., Kralovics R., Brummelkamp T.R., Nijman S.M., Burckstummer T. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 2014;24(12):2059-2065. https://doi.org/10.1101/gr.177220.114.
11. Eulalio A., Huntzinger E., Izaurralde E. Getting to the root of miRNAmediated gene silencing. Cell. 2008;132(1):9-14. https://doi.org/10.1016/j. cell.2007.12.024.
12. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156.
13. Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008;9(2):102-114. https://doi.org/10.1038/nrg2290.
14. Friedlander M.R., Mackowiak S.D., Li N., Chen W., Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012; 40(1):37-52. https://doi.org/10.1093/nar/gkr688.
15. Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Sodergren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., Okwuonu G., Hines S., Lewis L., DeRamo C., Delgado O., Dugan-Rocha S., Miner G., Morgan M., Hawes A., Gill R., Celera, Holt R.A., Adams M.D., Amanatides P.G., Baden-Tillson H., Barnstead M., Chin S., Evans C.A., Ferriera S., Fosler C., Glodek A., Gu Z., Jennings D., Kraft C.L., Nguyen T., Pfannkoch C.M., Sitter C., Sutton G.G., Venter J.C., Woodage T., Smith D., Lee H.M., Gustafson E., Cahill P., Kana A., Doucette-Stamm L., Weinstock K., Fechtel K., Weiss R.B., Dunn D.M., Green E.D., Blakesley R.W., Bouffard G.G., De Jong P.J., Osoegawa K., Zhu B., Marra M., Schein J., BosdetI., FjellC., Jones S., Krzywinski M., MathewsonC., Siddiqui A., Wye N., McPherson J., Zhao S., Fraser C.M., Shetty J., Shatsman S., Geer K., Chen Y., Abramzon S., Nierman W.C., Havlak P.H., Chen R., Durbin K.J., Egan A., Ren Y., Song X.Z., Li B., Liu Y., Qin X., Cawley S., Worley K.C., CooneyA.J., D’Souza L.M., Martin K., Wu J.Q., Gonzalez-Garay M.L., Jackson A.R., Kalafus K.J., McLeod M.P., Milosavljevic A., Virk D., Volkov A., Wheeler D.A., Zhang Z., Bailey J.A., Eichler E.E., Tuzun E., Birney E., Mongin E., Ureta-Vidal A., Woodwark C., Zdobnov E., Bork P., Suyama M., Torrents D., Alexandersson M., Trask B.J., Young J.M., Huang H., Wang H., Xing H., Daniels S., Gietzen D., Schmidt J., Stevens K., Vitt U., Wingrove J., Camara F., Alba M.M., Abril J.F., Guigo R., Smit A., Dubchak I., Rubin E.M., Couronne O., Poliakov A., Hubner N., Ganten D., Goesele C., Hummel O., Kreitler T., Lee Y.A., Monti J., Schulz H., Zimdahl H., Himmelbauer H., Lehrach H., Jacob H.J., Bromberg S., Gullings-Handley J., Jensen-Seaman M.I., Kwitek A.E., Lazar J., Pasko D., Tonellato P.J., Twigger S., Ponting C.P., Duarte J.M., Rice S., Goodstadt L., Beatson S.A., Emes R.D., Winter E.E., Webber C., Brandt P., Nyakatura G., Adetobi M., Chiaromonte F., Elnitski L., Eswara P., Hardison R.C., Hou M., Kolbe D., Makova K., Miller W., Nekrutenko A., Riemer C., Schwartz S., Taylor J., Yang S., Zhang Y., Lindpaintner K., Andrews T.D., Caccamo M., Clamp M., Clarke L., Curwen V., Durbin R., Eyras E., Searle S.M., Cooper G.M., Batzoglou S., Brudno M., Sidow A., Stone E.A., Venter J.C., Payseur B.A., Bourque G., Lopez-Otin C., Puente X.S., Chakrabarti K., Chatterji S., Dewey C., Pachter L., Bray N., Yap V.B., Caspi A., Tesler G., Pevzner P.A., Haussler D., Roskin K.M., Baertsch R., Clawson H., Furey T.S., Hinrichs A.S., Karolchik D., Kent W.J., Rosenbloom K.R., Trumbower H., Weirauch M., Cooper D.N., Stenson P.D., Ma B., Brent M., Arumugam M., Shteynberg D., Copley R.R., Taylor M.S., Riethman H., Mudunuri U., Peterson J., Guyer M., Felsenfeld A., Old S., Mockrin S., Collins F., Rat Genome Sequencing Project C. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428(6982):493-521. https://doi.org/10.1038/nature 02426.
16. Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(Database issue):D140-D144. https://doi.org/10.1093/nar/gkj112.
17. Hackenberg M., Rodriguez-Ezpeleta N., Aransay A.M. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 2011;39:W132W138. https://doi.org/10.1093/nar/gkr247.
18. Hackett J.A., Surani M.A. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell. 2014;15(4):416-430. https://doi.org/10.1016/j.stem.2014.09.015.
19. Ho T.T., Zhou N., Huang J., Koirala P., Xu M., Fung R., Wu F., Mo Y.Y. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 2015;43(3):e17. https://doi.org/10.1093/ nar/gku1198.
20. Hofacker I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31(13):3429-3431.
21. Hsu S.D., Lin F.M., Wu W.Y., Liang C., Huang W.C., Chan W.L., Tsai W.T., Chen G.Z., Lee C.J., Chiu C.M., Chien C.H., Wu M.C., Huang C.Y., Tsou A.P., Huang H.D. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163-D169. https://doi.org/10.1093/nar/gkq1107.
22. Huang G., Ye S., Zhou X., Liu D., Ying Q.L. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol. Life Sci. 2015;72(9):1741-1757. https://doi.org/10.1007/ s00018-015-1833-2.
23. Huang H.N., Chen S.Y., Hwang S.M., Yu C.C., Su M.W., Mai W., Wang H.W., Cheng W.C., Schuyler S.C., Ma N., Lu F.L., Lu J. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. Stem Cell Res. 2014;12(2):338353. https://doi.org/10.1016/j.scr.2013.11.009.
24. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(2):S2. https://doi.org/10.1186/1752-05099-S2-S2.
25. Jouneau A., Ciaudo C., Sismeiro O., Brochard V., Jouneau L., Vandormael-Pournin S., Coppee J.Y., Zhou Q., Heard E., Antoniewski C., Cohen-Tannoudji M. Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA. 2012;18(2):253264. https://doi.org/10.1261/rna.028878.111.
26. Lee C.G., McCarthy S., Gruidl M., Timme C., Yeatman T.J. MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance. PLoS One. 2014;9(1):e84597. https://doi.org/10.1371/journal.pone.0084597.
27. Leonardo T.R., Schultheisz H.L., Loring J.F., Laurent L.C. The functions of microRNAs in pluripotency and reprogramming. Nat. Cell Biol. 2012;14(11):1114-1121. https://doi.org/10.1038/ncb2613.
28. Li P., Tong C., Mehrian-Shai R., Jia L., Wu N., Yan Y., Maxson R.E., Schulze E.N., Song H., Hsieh C.L., Pera M.F., Ying Q.L. Germline competent embryonic stem cells derived from rat blastocysts. Cell. 2008;135(7):1299-1310. https://doi.org/10.1016/j.cell.2008.12.006.
29. Liu Z., Hui Y., Shi L., Chen Z., Xu X., Chi L., Fan B., Fang Y., Liu Y., Ma L., Wang Y., Xiao L., Zhang Q., Jin G., Liu L., Zhang X. Efficient CRISPR/Cas9-mediated versatile, predictable, and donorfree gene knockout in human pluripotent stem cells. Stem Cell Rep. 2016;7(3):496-507. https://doi.org/10.1016/j.stemcr.2016.07.021.
30. Long J.M., Lahiri D.K. MicroRNA-101 downregulates Alzheimer’s amyloid-beta precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun. 2011; 404(4):889-895. https://doi.org/10.1016/j.bbrc.2010.12.053.
31. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 1981;78(12):7634-7638.
32. Picanço-Castro V., Russo-Carbolante E., Reis L.C., Fraga A.M., de Magalhães D.A., Orellana M.D., Panepucci R.A., Pereira L.V., Covas D.T. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev. 2011;20(1):169-180. https://doi.org/10.1089/scd.2009.0424.
33. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-D596. https://doi.org/10.1093/nar/gks1219.
34. Rahkonen N., Stubb A., Malonzo M., Edelman S., Emani M.R., Närvä E., Lähdesmäki H., Ruohola-Baker H., Lahesmaa R., Lund R. Mature Let-7 miRNAs fine tune expression of LIN28B in pluripotent human embryonic stem cells. Stem Cell Res. 2016;17(3):498503. https://doi.org/10.1016/j.scr.2016.09.025.
35. Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140. https://doi.org/10.1093/ bioinformatics/btp616.
36. Samavarchi-Tehrani P., Golipour A., David L., Sung H.K., Beyer T.A., Datti A., Woltjen K., Nagy A., Wrana J.L. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010;7(1): 64-77. https://doi.org/10.1016/j.stem.2010.04.015.
37. Sturm M., Hackenberg M., Langenberger D., Frishman D. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics. 2010;11:292. https://doi.org/10.1186/14712105-11-292.
38. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. https://doi.org/10.1016/j.cell.2006.07.024.
39. Thomas M., Lieberman J., Lal A. Desperately seeking microRNA targets. Nat. Struct. Mol. Biol. 2010;17(10):1169-1174. https://doi.org/10.1038/ nsmb.1921.
40. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-1147.
41. Vaskova E.A., Medvedev S.P., Sorokina A.E., Nemudryy A.A., Elisaphenko E.A., Zakharova I.S., Shevchenko A.I., Kizilova E.A., Zhelezova A.I., Evshin I.S., Sharipov R.N., Minina J.M., Zhdanova N.S., Khegay I.I., Kolpakov F.A., Sukhikh G.T., Pokushalov E.A., Karaskov A.M., Vlasov V.V., Ivanova L.N., Zakian S.M. Transcriptome characteristics and X-chromosome inactivation status in cultured rat pluripotent stem cells. Stem Cells Dev. 2015;24(24):2912-2924. https://doi.org/10.1089/scd.2015.0204.
42. Vaskova E.A., Stekleneva A.E., Medvedev S.P., Zakian S.M. “Epigenetic memory” phenomenon in induced pluripotent stem cells. Acta Naturae. 2013;5(4):15-21.
43. Xu N., Papagiannakopoulos T., Pan G., Thomson J.A., Kosik K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647-658. https://doi.org/10.1016/j.cell.2009.02.038.
44. Yuan K., Ai W.B., Wan L.Y., Tan X., Wu J.F. The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells. Cell Biosci. 2017;7:38. https://doi.org/10.1186/s13578-017-0166-2.
45. Yue D., Liu H., Huang Y. Survey of computational algorithms for microRNA target prediction. Curr. Genomics. 2009;10(7):478-492. https://doi.org/10.2174/138920209789208219.
46. Zhao B., Yang D., Jiang J., Li J., Fan C., Huang M., Fan Y., Jin Y., Jin Y. Genome-wide mapping of miRNAs expressed in embryonic stem cells and pluripotent stem cells generated by different reprogramming strategies. BMC Genomics. 2014;15:488. https://doi.org/10.1186/14712164-15-488.
47. Zhu S., Li W., Liu J., Chen C.H., Liao Q., Xu P., Xu H., Xiao T., Cao Z., Peng J., Yuan P., Brown M., Liu X.S., Wei W. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 2016;34(12):12791286. https://doi.org/10.1038/nbt.3715.