Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The study of the functionality of cardiomyocytes obtained from induced pluripotent stem cells for the modeling of cardiac arrhythmias based on long QT syndrome

https://doi.org/10.18699/VJ18.346

Abstract

There are risk factors that lead the normal conduction of excitation in the heart into a chaotic one. These factors include hereditary and acquired channelopathies. Many dangerous changes in the work of the heart can be identified using the patient’s electrocardiogram. Such relatively easily detectable changes include the long QT interval syndrome (LQTS). Despite a relatively high prevalence of hereditary LQTS, to which it is necessary to add both hereditary and induced LQTS as well as the ease of detection on the ECG, the mechanism of reentry formation in this syndrome is still un­known. What should be noted is a high variability of the hereditary syndrome and the fact of the connection between the increase in the heart rate and the risk of cardiac arrest. After an electrophysiological study on individual cardiac cells from patients with the LQT syndrome, it became apparent that the search for a mechanism for the transition of the normal heart rhythm to chaotic and fibrillation cannot be limited to recording ion currents in single cells. To solve this problem, we need a model of the behavior of cardiac tissue which reflects the relationship of various factors and the risk of reentry. In order to create an experimental model of LQTS in our work, the iPSC of a pati­ent-specific line from a healthy patient was differentiated into a monolayer of cardiac cells and the parameters of the excitation propagation were studied depending on the stage of differentiation. It was shown that a stable value of the propagation velocity and the response to periodic stimulation in the range of physiological values, are reached after the 30th day of dif­ferentiation.

About the Authors

M. M. Slotvitsky
Moscow Institute of Physics and Technology
Russian Federation
Moscow region, Dolgoprudny


V. A. Tsvelaya
Moscow Institute of Physics and Technology
Russian Federation
Moscow region, Dolgoprudny


S. R. Frolova
Moscow Institute of Physics and Technology
Russian Federation
Moscow region, Dolgoprudny


E. V. Dement’eva
Institute of Cytology and Genetics SB RAS; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation; Institute of Chemical Biology and Fundamental Medicine SB RAS
Russian Federation
Novosibirsk


K. I. Agladze
Moscow Institute of Physics and Technology
Russian Federation
Moscow region, Dolgoprudny


References

1. Burridge P.W., Matsa E., Shukla P., Lin Z.C., Churko J.M., Ebert A.D., Lan F., Diecke S., Huber B., Mordwinkin N.M., Plews J.R., Abilez O.J., Cui B., Gold J.D., Wu J.C. Chemically defined generation of human cardiomyocytes. Nat. Methods. 2014;11(8):855-860.

2. Campuzano O., Perez-Serra A., Cesar S., Iglesias A., Brugada R. Genetic basis of atrial fibrillation. Genes & Diseases. 2016;3(4):257-262.

3. El-Sherif N., Turitto G., Boutjdir M., Pilai S., Otte B., Pedalino R. Electrophysiological basis of ECG characteristics of torsades de pointes in long QT syndrome. Card. Electrophysiol. Clin. 2014;6(3);433-444.

4. Estacion M., Waxman S.G. The response of Na(V)1.3 sodium channels to ramp stimuli: multiple components and mechanisms. J. Neurophysiol. 2013;109(2):306-314.

5. Fast V.G., Kléber A.G. Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc. Res. 1997;33(2):258-271.

6. Gintant G., Sager P.T., Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 2016;15(7):457-471.

7. Grigor’eva E.V., Valetdinova K.R., Ustyantseva E.I., Shevchenko A.I., Medvedev S.P., Mazurok N.A., Maretina M.A., Kuranova M.L., Kiselev A.V., Baranov V.S., Zakian S.M. Neural differentiation of patient-specific induced pluripotent stem cells from patients with a hereditary form of spinal muscle atrophy. Geny i kletki = Genes & Cells. 2016;XI(2):70-81. (in Russian)

8. Horbach S.P., Halffman W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PloS ONE. 2017; 12(10):e0186281.

9. Hou L., Deo M., Furspan P., Pandit S.V., Mironov S., Auerbach D.S., Gong Q., Zhou Z., Berenfeld O., Jalife J.A. Major role for hERG in determining frequency of reentry in neonatal rat ventricular myocyte monolayer novelty and significance. Circ. Res. 2010;107(12):1503-1511.

10. Itzhaki I., Maizels L., Huber I., Zwi-Dantsis L., Caspi O., Winterstern A., Feldman O., Gepstein A., Arbel G., Hammerman H., Boulos M., Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471(7337):225-229.

11. Jervell A., Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval, and sudden death. Am. Heart J. 1957;54(1):59-68.

12. Kang C., Qiao Y., Li G., Baechle K., Camelliti P., Rentschler S., Efimov I.R. Human organotypic cultured cardiac slices: new platform for high throughput preclinical human trials. Sci. Rep. 2016;6:28798.

13. Klimanskaya I., Rosenthal N., Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov. 2008;7(2):131-142.

14. Lian X., Zhang J., Azarin S.M., Zhu K., Hazeltine L.B., Bao X., Hsiao C., Kamp T.J., Palecek S.P. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 2013;8(1):162-175.

15. Lippiat J.D. Whole-cell recording using the perforated patch clamp technique. Potassium Channels: Methods and Protocols. Humana Press, 2009;141-149.

16. Ma J., Guo L., Fiene S.J., Anson B.D., Thomson J.A., Kamp T.J., Kolaja K.L., Swanson B.J., January C.T. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 2011;301(5):H2006-H2017.

17. Matsa E., Rajamohan D., Dick E., Young L., Mellor I., Staniforth A., Denning C. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur. Heart J. 2011;32(8):952-962.

18. Mauritz C., Schwanke K., Reppel M., Neef S., Katsirntaki K., MaierL.S., Nguemo F., Menke S., Haustein M., Hescheler J., Hasenfuss G., Martin U. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118(5):507-517.

19. Medvedev S.P., Malakhova A.A., Grigor’eva E.V., Shevchenko A.I., Dementyeva E.V., Sobolev I.A., Lebedev I.N., Shilov A.G., Zhimulev I.F., Zakian S.M. Derivation of induced pluripotent stem cells from fetal human skin fibroblasts. Acta Naturae. 2010;2(2);102-106.

20. Passier R., van Laake L.W., Mummery C.L. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453(7193):322-329.

21. Pelzmann B., Schaffer P., Bernhart E., Lang P., Mächler H., Rigler B., Koidl B. L-type calcium current in human ventricular myocytes at a physiological temperature from children with tetralogy of Fallot. Cardiovasc. Res. 1998;38(2):424-432.

22. Schwartz P.J., Periti M., Malliani A. The long QT syndrome. Am. Heart J. 1975;89(3):378-390.

23. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872.

24. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676.


Review

Views: 1038


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)