Антисмысловые олигонуклеотиды для исследований механизмов гипертонической болезни и ее терапии
https://doi.org/10.18699/VJ18.354
Аннотация
Ключевые слова
Об авторах
Л. О. КлимовРоссия
Новосибирск
А. А. Серяпина
Россия
Новосибирск
В. Ф. Зарытова
Россия
Новосибирск
А. С. Левина
Россия
Новосибирск
А. Л. Маркель
Россия
Новосибирск
Список литературы
1. Aguero J., Ishikawa K., Hadri L., Santos-Gallego C.G., Fish K.M., Kohlbrenner E., Hammoudi N., Kho C., Lee A., Ibáñez B., GarcíaAlvarez A., Zsebo K., Maron B.A., Plataki M., Fuster V., Leo pold J.A., Hajjar R.J. Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension. J. Am. Coll. Cardiol. 2016;67(17):2032-2046. https://doi.org/10.1016/j.jacc.2016.02.049.
2. Albinsson S., Skoura A., Yu J., DiLorenzo A., Fernández-Hernando C., Offermanns S., Miano J.M., Sessa W.C. Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS ONE. 2011;6(4):18869. https://doi.org/10.1371/journal.pone. 0018869.
3. Ali Z.A. Making sense of antisense therapy for hypertension. Hellenic J. Cardiol. 2006;47(3):150-151. Barnett C.F., Machado R.F. Sildenafil in the treatment of pulmonary hypertension. Vasc. Health Risk Manag. 2006;2(4):411-422.
4. Bátka S., Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr. Hypertens. Rep. 2012;14(1):79-87. https://doi.org/10.1007/s11906-011-0235-6.
5. Belikova A.M., Zarytova V.F., Grineva N.I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloro-ethylamine and nitrogen mustard residues. Tetrahedron Lett. 1967;8(37):3557- 3562. https://doi.org/10.1016/S0040-4039(01)89794-X.
6. Bennet C.F., Swayze E.E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 2010;50(1):259-293. https://doi.org/10.1146/ annurev.pharmtox.010909.105654.
7. Bharali D.J., Klejbor I., Stachowiak E.K., Dutta P., Roy I., Kaur N., Bergey E.J., Prasad P.N., Stachowiak M.K. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. USA. 2005;102(32):11539- 11544. https://doi.org/10.1073/pnas.0504926102.
8. Bienertova-Vasku J., Novak J., Vasku A. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J. Am. Soc. Hypertens. 2015;9(3):221-234. https://doi.org/10.1016/j.jash.2014.12.011.
9. Boisguérin P., Deshayes S., Gait M.J., O’Donovan L., Godfrey C., Betts C.A., Wood M.J., Lebleu B. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv. Drug Deliv. Rev. 2015;87:52-67. https://doi.org/10.1016/j.addr.2015.02.008.
10. Bonner J.C., Card J.W., Zeldin D.C. Nanoparticle-mediated drug delivery and pulmonary hypertension. Hypertension. 2009;53(5). https://doi.org/10.1161/HYPERTENSIONAHA.108.122846.
11. Bouard D., Alazard-Dany N., Cosset F.-L. Viral vectors: from virology to transgene expression. Br. J. Pharmacol. 2009;157(2):153-165. https://doi.org/10.1038/bjp.2008.349.
12. Cataliotti A., Tonne J.M., Bellavia D., Martin F.L., Oehler E.A., HardersG.E., Campbell J.M., Peng K.W., Russell S.J., Malatino L.S., Burnett J.C. Jr, Ikeda Y. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation. 2011;123(12): 1297-1305. https://doi.org/10.1161/CIRCULATIONAHA.110.981720.
13. Chan S.Y., Loscalzo J. Pathogenic mechanisms of pulmonary arterial hypertension. J. Mol. Cell. Cardiol. 2008;44(1):14-30. https://doi.org/10.1016/j.yjmcc.2007.09.006.
14. Clare Zhang Y., Kimura B., Shen L., Phillips M.I. New beta-blocker: prolonged reduction in high blood pressure with beta(1) antisense oligodeoxynucleotides. Hypertension. 1979;35(1 Pt. 2):219-224. https://doi.org/10.1161/01.HYP.35.1.219.
15. De Jong W.H., Borm P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 2008;3(2):133-149.
16. Deng L., Blanco F.J., Stevens H., Lu R., Caudrillier A., McBride M., McClure J.D., Grant J., Thomas M., Frid M., Stenmark K., White K., Seto A.G., Morrell N.W., Bradshaw A.C., MacLean M.R., BakerA.H. MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ. Res. 2015;117(10):870-883. https://doi.org/10.1161/CIRCRESAHA.115.306806.
17. Dominiczak A.F. Genetic basis of blood pressure and hypertension. J. Hypertens. 2016;34:e33. Fabian E., Landsiedel R., Ma-Hock L., Wiench K., Wohlleben W., van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 2008;82(3):151-157. https://doi.org/10.1007/s00204-007-0253-y.
18. Fan Z., Zhang L., Shi Z., Gan X.B., Gao X.Y., Zhu G.Q. Artificial microRNA interference targeting AT1a receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther. 2012;19(8):810- 817. https://doi.org/10.1038/gt.2011.145.
19. Farman C., Kornbrust D. Oligodeoxynucleotide studies in primates: antisense and immune stimulatory indications. Toxicol. Pathol. 2003; 31(1):119-122. https://doi.org/10.1080/01926230390174995.
20. Fedoseeva L.A., Antonov E.V., Klimov L.O., Dymshits G.M., Markel A.L. Function of the renin-angiotensin-aldosterone system in the ISIAH rats with stress - sensitive arterial hypertension. Eds. A. Himura, T. Sato. Renin-Angiotensin System. N. Y.: Nova Science Publishers, Inc, 2013;1-44.
21. Furberg C.D., Alderman M.H. JNC 8: Shortcomings in process and treatment recommendations. Am. J. Hypertens. 2014;27(12):1443- 1445. https://doi.org/10.1093/ajh/hpu158.
22. Gyurko R., Wielbo D., Phillips M.I. Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul. Pept. 1993;49(2):167-174.
23. Heinlaan M., Ivask A., Blinova I., Dubourguier H.C., Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008;71(7):1308-1316. https://doi.org/10.1016/j. chemosphere.2007.11.047.
24. Jeng H.A., Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health, Part A. 2006;41(12):2699- 2711. https://doi.org/10.1080/10934520600966177.
25. Juliano R.L., Carver K. Cellular uptake and intracellular trafficking of oligonucleotides. Adv. Drug Deliv. Rev. 2015;87:35-45. https://doi.org/10.1016/j.addr.2015.04.005.
26. Kagiyama S., Varela A., Phillips M.I., Galli S.M. Antisense inhibition of brain renin-angiotensin system decreased blood pressure in chronic 2-kidney, 1 clip hypertensive rats. Hypertension. 2001;37 (2 Pt. 2):371-375. https://doi.org/10.1161/01.HYP.37.2.371.
27. Kintsurashvili E., Gavras I., Johns C., Gavras H. Effects of antisense oligodeoxynucleotide targeting of the α2B-adrenergic receptor messenger RNA in the central nervous system. Hypertension. 2001; 38(5). https://doi.org/10.1161/hy1101.093426.
28. Levina A.S., Repkova M.N., Ismagilov Z.R., Shikina N.V., Malygin E.G., Mazurkova N.A., Zinov’ev V.V., Evdokimov A.A., Baiborodin S.I., Zarytova V.F. High-performance method for specific effect on nucleic acids in cells using TiO2~DNA nanocomposites. Sci. Rep. 2012;2:756. https://doi.org/10.1038/srep00756.
29. Levina A.S., Repkova M.N., Mazurkova N.A., Makarevich E.V., Ismagilov Z.R., Zarytova V.F. Knockdown of different influenza A virus subtypes in cell culture by a single antisense oligodeoxyribonucleotide. Int. J. Antimicrob. Agents. 2015;46(1):125-128. https://doi.org/10.1016/j. ijantimicag.2015.03.004.
30. Levina A.S., Repkova M.N., Mazurkova N.A., Zarytova V.F. Nanoparticle-mediated nonviral DNA delivery for effective inhibition of influenza a viruses in cells. IEEE Trans. Nanotechnol. 2016;15(2):248- 254. https://doi.org/10.1109/TNANO.2016.2516561.
31. Liang Y., Lin S., Zhou Y., Wang J., Yu X. Beta-1 adrenergic receptor antisense-oligodeoxynucleotides ameliorates left ventricular remodeling in 2-Kidney, 1-Clip rats. J. Biomed. Sci. 2007;14(1):155-164. https://doi.org/10.1007/s11373-006-9128-0.
32. Lim K. Retroviral integration profiles: their determinants and implications for gene therapy. BMB Rep. 2012;45(4):207-212.
33. Ling S., Nanhwan M., Qian J., Kodakandla M., Castillo A.C., Thomas B., Liu H., Ye Y. Modulation of microRNAs in hypertensioninduced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J. Mol. Cell. Cardiol. 2013;65:127-136. https://doi.org/10.1016/j. yjmcc.2013.10.003.
34. Liu Y., Lou C., Yang H., Shi M., Miyoshi H. Silica nanoparticles as promising drug/gene delivery carriers and fluorescent nano-probes: recent advances. Curr. Cancer Drug Targets. 2011;11(2):156-163.
35. Makled S., Nafee N., Boraie N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted de livery of phosphodiesterase-5-inhibitor. Int. J. Pharm. 2017;517(1): 312-321. https://doi.org/10.1016/j.ijpharm.2016.12.026.
36. Mescalchin A., Restle T. Oligomeric nucleic acids as antivirals. Molecules. 2011;16(12):1271-1296. https://doi.org/10.3390/molecules16021271.
37. Moore A.F., Heiderstadt N.T., Huang E., Howell N.L., Wang Z.Q., Siragy H.M., Carey R.M. Selective inhibition of the renal angiotensin type 2 receptor increases blood pressure in conscious rats. Hypertension. 2001;37(5):1285-1291. https://doi.org/10.1161/01.HYP.37.5.1285.
38. Nakamura K., Matsubara H., Akagi S., Sarashina T., Ejiri K., Kawakita N., Yoshida M., Miyoshi T., Watanabe A., Nishii N., Ito H. Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension. J. Clin. Med. 2017;6(5):48. https://doi.org/10.3390/jcm6050048.
39. Paranjpe M., Müller-Goymann C. Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci. 2014;15(4):5852-5873. https://doi.org/10.3390/ijms15045852.
40. Park J.H., Gu L., Maltzahn G., Ruoslahti E., Bhatia S.N., Sailor M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009;8(4):331-336. https://doi.org/10.1038/nmat2398.
41. Parveen S., Misra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012; 8(2):147-166. https://doi.org/10.1016/j.nano.2011.05.016.
42. Paunesku T., Rajh T., Wiederrecht G., Maser J., Vogt S., Stojićević N., Protić M., Lai B., Oryhon J., Thurnauer M., Woloschak G. Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater. 2003;2(5):343- 346. https://doi.org/10.1038/nmat875.
43. Phillips M.I. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Hypertension. 1997;29(1 Pt 2): 177-187. https://doi.org/10.1161/01.HYP.29.1.177.
44. Phillips M.I. Is gene therapy for hypertension possible? Hypertension. 1999;33(1):8-13. https://doi.org/10.1161/01.HYP.33.1.8.
45. Pletnev D., Evdokimov A., Belanov E., Malygin E., Balachnin S., Serova O., Zinoviev V., Zarytova V., Levina A., Repkova M., Ismagilov Z., Shikina N., Zagrebelnyi S., Baiborodin S. Check of antiviral activity of nanocomposites with active check of antiviral activity of drugs based on nanocomposites, which contained oligonucleotides for direct splitting viral genome of influenza virus type A. Antiviral Res. 2008;78(2):A46. https://doi.org/10.1016/j.antiviral.2008.01.092.
46. Pullamsetti S.S., Doebele C., Fischer A., Savai R., Kojonazarov B., Dahal B.K., Ghofrani H.A., Weissmann N., Grimminger F., Bonauer A., Seeger W., Zeiher A.M., Dimmeler S., Schermuly R.T. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2012;185(4):409-419. https://doi.org/10.1164/rccm.201106-1093OC.
47. Ravi Kumar M.N., Sameti M., Mohapatra S.S., Kong X., Lockey R.F., Bakowsky U., Lindenblatt G., Schmidt H., Lehr C.M. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J. Nanosci. Nanotechnol. 2004;4(7):876-881.
48. Repkova M.N., Levina A.S., Seryapina A.A., Shikina N.V., Bessudnova E.V., Zarytova V.F., Markel A.L. Toward gene therapy of hypertension: Experimental study on hypertensive ISIAH rats. Biochemistry (Mosc.). 2017;82(4):454-457. https://doi.org/10.1134/S000629791704006X.
49. Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A., Han M.S., Mirkin C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312(5776). https://doi.org/10.1126/ science.1125559.
50. Roy I., Ohulchanskyy T.Y., Bharali D.J., Pudavar H.E., Mistretta R.A., Kaur N., Prasad P.N. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA. 2005;102(2):279-284. https://doi.org/10.1073/pnas.0408039101.
51. Roy I., Stachowiak M.K., Bergey E.J. Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine. 2008;4(2):89-97. https://doi.org/10.1016/j.nano.2008.01.002.
52. Segura-Ibarra V., Amione-Guerra J., Cruz-Solbes A.S., Cara F.E., Iruegas-Nunez D.A., Wu S., Youker K.A., Bhimaraj A., Torre-Amione G., Ferrari M., Karmouty-Quintana H., Guha A., Blanco E. Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. Int. J. Pharm. 2017;524(1): 257-267. https://doi.org/10.1016/j.ijpharm.2017.03.069.
53. Shenouda S., Johns C., Kintsurashvili E., Gavras I., Gavras H. Longterm inhibition of the central α2B-adrenergic receptor gene via recombinant AAV-delivered antisense in hypertensive rats. Am. J. Hypertens. 2006;19(11):1135-1143. https://doi.org/10.1016/j.amjhyper.2006. 04.001.
54. Spurgers K.B., Sharkey C.M., Warfield K.L., Bavari S. Oligonucleotide antiviral therapeutics: Antisense and RNA interference for highly pathogenic RNA viruses. Antivir. Res. 2008;78:26-36. https://doi.org/10.1016/j.antiviral.2007.12.008.
55. Sugano M., Tsuchida K., Sawada S., Makino N. Reduction of plasma angiotensin II to normal levels by antisense oligodeoxynucleotides against liver angiotensinogen cannot completely attenuate vascular remodeling in spontaneously hypertensive rats. J. Hypertens. 2000; 18(6):725-731.
56. Triantafyllidi H., Kintsurashvili E., Johns C., Gavras I., Gavras H. Central plasmid antisense administration reduces blood pressure inhibiting alpha2B adrenoceptor gene expression in spontaneously hypertensive rats in vivo. Hellenic J. Cardiol. 2006;47(3):144-149.
57. Turnbull I.C., Eltoukhy A.A., Fish K.M., Nonnenmacher M., Ishikawa K., Chen J., Hajjar R.J., Anderson D.G., Costa K.D. Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Mol. Ther. 2016;24(1):66-75. https://doi.org/10.1038/mt.2015.193.
58. Wang H., Reaves P.Y., Gardon M.L., Keene K., Goldberg D.S., Gelband C.H., Katovich M.J., Raizada M.K. Angiotensin I-converting enzyme antisense gene therapy causes permanent antihypertensive effects in the SHR. Hypertension. 2000;35(1). https://doi.org/10.1161/01. HYP.35.1.202.
59. Wang X., Sun Z., Cade R. Prolonged attenuation of cold-induced hypertension by adenoviral delivery of renin antisense. Kidney Int. 2005;68(2):680-687. https://doi.org/10.1111/j.1523-1755.2005.00446.x.
60. Wickstrom E. DNA and RNA derivatives to optimize distribution and delivery. Adv. Drug Deliv. Rev. 2015;87:25-34. Available at: https://doi.org/10.1016/j.addr.2015.04.012.
61. Xie X., Atkins E., Lv J., Bennett A., Neal B., Ninomiya T., Woodward M., MacMahon S., Turnbull F., Hillis G.S., Chalmers J., Mant J., Salam A., Rahimi K., Perkovic V., Rodgers A. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016; 387(10017):435-443. https://doi.org/10.1016/S0140-6736(15)00805-3.
62. Yuan L., Sheng J., Lu P., Wang Y.Q., Jin T., Du Q. Nanoparticle-mediated RNA interference of angiotensinogen decreases blood pressure and improves myocardial remodeling in spontaneously hypertensive rats. Mol. Med. Rep. 2015;12(3):4657-4663. https://doi.org/10.3892/ mmr.2015.3909.
63. Zamecnik P.C., Stephenson M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA. 1978;75(1):280-284.
64. Zhang Y.C., Bui J.D., Shen L., Phillips M.I. Antisense inhibition of beta(1)-adrenergic receptor mRNA in a single dose produces a profound and prolonged reduction in high blood pressure in spontaneously hypertensive rats. Circulation. 2000;101(6):682-688.
65. Zheng L., Xu C.C., Chen W.D., Shen W.L., Ruan C.C., Zhu L.M., Zhu D.L., Gao P.J. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem. Biophys. Res. Commun. 2010;400(4):483- 488. https://doi.org/10.1016/j.bbrc.2010.08.067.