Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Тканеспецифичные эффекты бенз[а]пирена и ДДТ на профиль экспрессии микроРНК у самок крыс

https://doi.org/10.18699/VJ18.355

Аннотация

Многие ксенобиотики окружающей среды, такие как бенз[а]пирен (Б(а)П) и 1,1,1-трихлор-2,2-бис(4-хлорфенил) этан (ДДТ), обладают эпигенетическими механизмами повреждения клеток, приводящими к развитию канцерогенеза. Отчасти эти нарушения могут быть опосредованы активацией ядерных рецепторов, приводящей к активации экспрессии генов и микроРНК, участвующих в процессах злокачественной трансформации клеток. Поэтому целью данной работы было исследовать цепь событий «введение ксенобиотика – активация рецептора – повышение экспрессии микроРНК – понижение экспрессии гена-мишени» в качестве одного из ключевых факторов развития канцерогенеза. С помощью методов in silico проведен анализ генома крыс для поиска микроРНК, находящихся под регуляцией АhR (арил-гидрокарбонового рецептора) и CAR (конститутивного андростанового рецептора), активируемых под действием Б(а)П и ДДТ соответственно. В частности, miR-3577 и -193b были отобраны в качестве потенциально регулируемых CAR; miR-207 – как кандидат на микроРНК, находящийся под регуляцией AhR. Результаты исследования показали, что введение ДДТ и Б(а)П вызывало тканеспецифичное изменение экспрессии микроРНК и их генов-хозяев в случае как острого, так и хронического введений ксенобиотиков. Для подтверждения эффектов ксенобиотиков на экспрессию микроРНК мы также оценили уровень мРНК генов PTPN6, EIF3F, Cbx7 и Dicer1, потенциально являющихся мишенями miR-193b, -207 и -3577. Исследование показало высокую связь экспрессии генов-мишеней и микроРНК, однако точный характер этих изменений зависел от типа ткани, времени после введения и дозы ксенобиотика.

Об авторах

Д. С. Ушаков
Научно-исследовательский институт молекулярной биологии и биофизики; Новосибирский государственный педагогический университет
Россия
Новосибирск


Т. С. Калинина
Научно-исследовательский институт молекулярной биологии и биофизики; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


А. С. Дорожкова
Научно-исследовательский институт молекулярной биологии и биофизики
Россия
Новосибирск


В. Ю. Овчинников
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Л. Ф. Гуляева
Научно-исследовательский институт молекулярной биологии и биофизики; Новосибирский государственный педагогический университет; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


Список литературы

1. Brengues M., Teixeira D., Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science. 2005;310(5747):486-489. DOI 10.1126/science.1115791.

2. Caiment F., Gaj S., Claessen S., Kleinjans J. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res. 2015;43:2525-2534. DOI 10.1093/nar/gkv115.

3. Chanyshev M.D., Ushakov D.S., Gulyaeva L.F. Expression of miR-21 and its Acat1, Armcx1, and Pten target genes in liver of female rats treated with DDT and benzo[a]pyrene. Mol. Biol. (Mosk). 2017; 51(4):664-670. DOI 10.7868/S0026898417040085.

4. Demosthenous C., Han J.J., Hu G., Stenson M., Gupta M. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma. Oncotarget. 2015;6(42): 44703-44713. DOI 10.18632/oncotarget.6300.

5. Finnegan E.F., Pasquinelli A.E. MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 2013;48:51-68. DOI 10.3109/10409238.2012.738643.

6. Gulyaeva L.F., Chanyshev M.D., Kolmykov S.K., Ushakov D.S., Nechkin S.S. Effect of xenobiotics on microRNA expression in rat liver. Biomed. Khim. 2016;62(2):154-159. DOI 10.18097/PBMC 20166202154.

7. Gulyaeva L.F., Kushlinskiy N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med. 2016;14(1):143-153. DOI 10.1186/ s12967-016-0893-x.

8. Harada T., Takeda M., Kojima S., Tomiyama N. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicol. Res. 2016;32(1):21-33. DOI 10.5487/TR.2016.32.1.021.

9. Hata A., Kashima R. Dysregulation of microRNA biogenesis machinery in cancer. Crit. Rev. Biochem. Mol. Biol. 2015;1:1-14. DOI 10.3109/10409238.2015.1117054.

10. Huumonen K., Korkalainen M., Viluksela M., Lahtinen T., Naarala J., Juutilainen J. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations. Front. Public Health. 2015;2(139):1-9. DOI 10.3389/fpubh. 2014.00139.

11. Marouani N., Hallegue D., Sakly M., Benkhalifa M., Ben Rhouma K., Tebourbi O. p,p′-DDT induces testicular oxidative stress-induced apoptosis in adult rats. Reprod. Biol. Endocrinol. 2017;15:40. DOI 10.1186/s12958-017-0259-0.

12. Marrone A.K., Tryndyak V., Beland F.A., Pogribny I.P. MicroRNA responses to the genotoxic carcinogens aflatoxin B1 and benzo[a] pyrene in human HepaRG cells. Toxicol. Sci. 2016;149(2):496-502. DOI 10.1093/toxsci/kfv253.

13. Shi J., Kahle A., Hershey J.W., Honchak B.M., Warneke J.A., Leong S.P., Nelson M.A. Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene. 2006;25(35):4923-4936.

14. Epub 2006 Mar 13. DOI 10.1038/ sj.onc.1209495. Song C., Xu Z., Jin Y., Zhu M., Wang K., Wang N. The network of microRNAs, transcription factors, target genes and host genes in human renal cell carcinoma. Oncol. Lett. 2015;9(1):498-506. DOI 10.3892/ol.2014.2683.

15. Stolpmann K., Brinkmann J., Salzmann S., Genkinger D., Fritsche E., Hutzler C., Wajant H., Luch A., Henkler F. Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95Land TRAIL-induced apoptosis. Cell Death Dis. 2012;3(9):e388. DOI 10.1038/cddis.2012.127.

16. Tan P.X., Du S.S., Ren C., Yao Q.W., Zheng R., Li R., Yuan Y.W. MicroRNA-207 enhances radiation-induced apoptosis by directly targeting Akt3 in cochlea hair cells. Cell Death Dis. 2014;5:e1433. DOI 10.1038/cddis.2014.407.

17. Tilghman S.L., Bratton M.R., Segar H.C., Martin E.C., Rhodes L.V., Li M., McLachlan J.A., Wiese T.E., Nephew K.P., Burow M.E. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One. 2012;7:e32754. DOI 10.1371/journal.pone.0032754.

18. Vaidotas S., Gintautas V., Danute B., Kestutis S. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment. BMC Cancer. 2016;16:789. DOI 10.1186/s12885-016-2825-9.

19. Wei H., Zhang J., Tan K., Sun R., Yin L., Pu Y. Benzene-induced aberrant miRNA expression profile in hematopoietic progenitor cells in C57BL/6 mice. Int. J. Mol. Sci. 2015;16:27058-27071. DOI 10.3390/ijms161126001.

20. Xing Y., Nukaya M., Satyshur K.A., Jiang L., Stanevich V., Korkmaz E.N., Burdette L., Kennedy G.D., Cui Q., Bradfield C.A. Identification of the Ah-receptor structural determinants for ligand preferences. Toxicol. Sci. 2012;129(1):86-97. DOI 10.1093/toxsci/ kfs194.

21. Ye S., Yang L., Zhao X., Song W., Wang W., Zheng S. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem. Biophys. 2014;70:1849-1858. DOI 10.1007/s12013-014-0142-y

22. Yue S.B., Trujillo R.D., Tang Y., O’Gorman W.E., Chen C.Z. Loop nucleotides control primary and mature miRNA function in target recognition and repression. RNA Biol. 2011;8(6):1115-1123. DOI 10.4161/rna.8.6.17626.


Рецензия

Просмотров: 817


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)