CHARACTERISTIC CHANGES IN THE COPY NUMBER OF INTERSPERSED REPEATS IN BONE MARROW CELLS OF MICE TREATED WITH CYCLOPHOSPHAMIDE AND EXOGENOUS HUMAN DNA
Abstract
Mice were observed to get sick and die upon administration of exogenous DNA in a specific period of time following their pretreatment with the cytostatic cyclophosphamide (CP) (Dolgova et al., 2011). It was established that exogenous DNA reaches internal compartments of bone marrow cells (BMCs) where it is processed (Dolgova et al., 2012a). Thus, BMCs appear to be the primary targets for the synergic action of these preparations (Dolgova et al., 2012b).
In the present study, we show that the copy number for mouse interspersed genomic repeats decreases in the genome of mouse mononuclear cells as a result of interstrand cross-link (ICL) repair after pre-treatment with cytostatic CP. This phenomenon occurs within the time span from 18 to 24 h following CP injection, which corresponds to the final step in the repair of the majority of double-strand breaks (DSBs), as predominant intermediates in ICL repair. Injections of exogenous DNA in CP-pretreated mice preserve the copy number of interspersed repeats at the original level. Our results suggest that the fragments of exogenous DNA participate in ICL-induced DSB repair, thereby compromising the repair process.
About the Authors
E. V. DolgovaRussian Federation
A. V. Prokopenko
Russian Federation
V. P. Nikolin
Russian Federation
N. A. Popova
Russian Federation
A. S. Proskurina
Russian Federation
K. E. Orishchenko
Russian Federation
E. A. Alyamkina
Russian Federation
Ya. R. Efremov
Russian Federation
E. R. Chernykh
Russian Federation
A. A. Ostanin
Russian Federation
S. S. Bogachev
Russian Federation
T. S. Gvozdeva
Russian Federation
E. M. Malkova
Russian Federation
O. S. Taranov
Russian Federation
V. A. Rogachev
Russian Federation
A. V. Panov
United States
S. N. Zagrebelnyi
Russian Federation
M. A. Shurdov
Russian Federation
References
1. Бутовская П.Р., Павлова Г.В., Мартиросян И.А. и др. Соматический мозаицизм у мышей, выявляемый методом RAPD-PCR // Молекуляр. генет., микробиол. и вирусология. 2009. № 1. С. 3–7.
2. Долгова Е.В., Николин В.П., Попова Н.А. и др. Интернализация экзогенной ДНК во внутренние компартменты клеток костного мозга мышей // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 2. С. 397–414.
3. Долгова Е.В., Николин В.П., Попова Н.А. и др. Патологические изменения, возникающие в организме мышей, обработанных сочетанием циклофосфана и экзогенной ДНК // Вавилов. журн. генет. и селекции. 2013. Т. 17. № 1. С. 129–146.
4. Долгова Е.В., Проскурина А.С., Николин В.П. и др. Характеристика временных параметров проявления эффекта токсического действия инъекций экзогенной ДНК на фоне предобработки цитостатиком циклофосфаном // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 4. С. 674–689.
5. Кимиссаренко С.В., Лукинов Д.И., Черепенко Е.И. Биосинтез различных классов последовательностей ядерной ДНК при пролиферации клеток мышиной плазмоцитомы MOPC-21 // Биополимеры и клетка. 1986. Т. 2. № 4. С. 220–23.
6. Лихачева А.С., Рогачев В.А., Николин В.П. и др. Участие экзогенной ДНК в молекулярных процессах, протекающих в соматической клетке // Вестник ВОГиС. 2008. Т. 12. № 3. С. 426–473.
7. Маниатис Е., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование: Пер. с англ. М.: Мир, 1984. 480 с.
8. Николин В.П., Попова Н.А., Себелева Т.Е. и др. Влияние экзогенной ДНК на восстановление лейкопоэза и противоопухолевый эффект циклофосфана // Вопр. онкологии. 2006. Т. 52. С. 336–340.
9. Смирнов Г.Б. Почему редуцируются бактериальные геномы? // Бреслеровские чтения. Спб.: Наука, 2007. С. 34–60.
10. Abrams R.A., McCormack K., Bowles C., Deisseroth A.B. Cyclophosphamide treatment expands the circulating hematopoietic stem cell pool in dogs // J. Clin. Invest. 1981. V. 67. Nо. 5. P. 1392–1399.
11. Akkari Y.M., Bateman R.L., Reifsteck C.A. et al. DNA replication is required to elicit cellular responses to psoraleninduced DNA interstrand cross-links // Mol. Cell Biol. 2000. V. 20. Nо. 21. P. 8283–8289.
12. De Silva I.U., McHugh P.J., Clingen P.H. et al. Defi ning the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells // Mol. Cell Biol. 2000. V. 20. P. 7980–7990.
13. Farzaneh F., Zalin R., Brill D., Shall S. DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation // Nature. 1982. V. 300. Nо. 5890. P. 362–366.
14. Fleming R.A. An overview of cyclophosphamide and ifosfamide pharmacology // Pharmacotherapy. 1997. V. 17. P. 146–154.
15. Jack H.M., McDowell M., Steinberg C.M. et al. Looping out and deletion mechanism for the immunoglobulin heavychain class switch // Proc. Natl Acad. Sci. USA. 1988. V. 85. P. 1581–1585.
16. Jahn C.L., Klobutcher L.A. Genome remodeling in ciliated protozoa // Annu. Rev. Microbiol. 2002. V. 56. P. 489–520.
17. Jurka J., Kohany O., Pavlicek A. et al. Clustering, duplication and chromosomal distribution of mouse SINE retrotransposons // Cytogenet. Genome Res. 2005. V. 110. P. 117–123.
18. Hamlin J.L. Mammalian origins of replication // Bioаssays. 1992. V. 14. Nо. 10. P. 651–659.
19. Hancock J.M. Gene factories, microfunctionalization and the evolution of gene families // Trends Genet. 2005. V. 21. P. 591–595.
20. Herriсk J. Genetic variation and DNA replication timing, or why is there late replicating DNA? // Evolution. 2011. V. 65. Nо. 11. P. 3031–3047.
21. Holmquist G.P., Caston L.A. Replication time of interspersed repetitive DNA sequences in hamsters // Biochim. Biophys Acta. 1986. V. 868. No. 2/3. P. 164–177.
22. Johnstone A.P., Williams G.T. Role of DNA breaks and ADPribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes // Nature. 1982. V. 300. No. 5890. P. 368–370.
23. Kobayashi T. A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity // Bioаssays. 2008. V. 30. No. 3. P. 267–272.
24. Kotnis A., Kannan S., Sarin R. et al. Case-control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk // Br. J. Cancer. 2008. V. 99. P. 1340–1347.
25. Kramerov D.A., Vassetzky N.S. Short retroposons in eukaryotic genomes // Int. Rev. Cytol. 2005. V. 247. Р. 165–221.
26. Krayev A.S., Kramerov D.A., Skryabin K.G. et al. The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA // Nucl. Acids Res. 1980. V. 8. Nо. 6. P. 1201–1215.
27. Lansdorp P.M. Major cutbacks at chromosome ends // Trends Biochem. Sci. 2005. V. 30. P. 388–395.
28. Le Breton C., Hennion M., Arimondo P.B. et al. Replicationfork stalling and processing at a single psoralen interstrand crosslink in Xenopus egg extracts // PloS one. 2011. V. 6. Nо. 4. P. e18554.
29. Likhacheva A.S., Nikolin V.P., Popova N.A. et al. Integration of human DNA fragments into the cell genomes of certain tissues from adult mice treated with cytostatic cyclophosphamide in combination with human DNA // Gene Ther. Mol. Biol. 2007. V. 11. P. 185–202.
30. Mazur L., Czyzewska A. Immunocytochemical analysis of apoptotic bone marrow cells after treatment of mice with WR-2721 and chemotherapeutic drugs // Folia Histochem. Cytobiol. 2001. V. 39. Nо. 2. P. 63–66.
31. Moore R.C., Purugganan M.D. The evolutionary dynamics of plant duplicate genes // Curr. Opin. Plant Biol. 2005. V. 8. P. 122–128.
32. Niedernhofer L.J., Odijk H., Budzowska M. et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks // Mol. Cell Biol. 2004. V. 24. Nо. 13. P. 5776–5787.
33. Paques F., Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae // Microbiol. Mol. Biol. Rev. 1999. V. 63. Nо. 2. P. 349–404.
34. Pвques F., Leung W.Y., Haber J.E. Expansions and contractions in a tandem repeat induced by double-strand break repair // Mol. Cell. Biol. 1998. V. 18. Nо. 4. P. 2045–2054.
35. Roberts D.B. Drosophila: a practical approach. Oxford-Washington, DC: IRL Press, 1986. 295 p.
36. Salem M.L., El-Naggar S.A., Cole D.J. Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo // Cell Immunol. 2010. V. 261. Nо. 2. P. 134–143.
37. Serdobova I.M., Kramerov D.A. Short retroposons of the B2 superfamily: evolution and application for the study of rodent phylogeny // J. Mol. Evol. 1998. V. 46. P. 202–214.
38. Shibata A., Barton O., Noon A.T. et al. Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of G(2)/M checkpoint arrest // Mol. Cell. Biol. 2010. V. 30. Nо. 13. P. 3371–3383.
39. Tanaka H., Cao Y., Bergstrom D.A. et al. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplifi cation in human cancer // Mol. Cell. Biol. 2007 . V. 6. P. 1993–2002.
40. Taussig M.J. Molecular genetics of immunoglobulins // Immunol. Suppl. 1988. V. 1. P. 7–15.
41. Tower J. Developmental gene amplifi cation and origin regulation // Annu. Rev. Genet. 2004. V. 38. P. 273–304.
42. Tseng H., Chou W., Wang J. et al. Mouse ribosomal RNA genes contain multiple differentially regulated variants // PLoS One. 2008. V. 3. P. e1843.
43. Vassetzky N.S., Ten O.A., Kramerov D.A. B1 and related SINEs in mammalian genomes // Gene. 2003. V. 319. P. 149–160.
44. Vatolin S.Y., Okhapkina E.V., Matveeva N.M. et al. Scheduled perturbation in DNA during in vitro differentiation of mouse embryo-derived cells // Mol. Reprod. Dev. 1997. V. 47. Nо. 1. P. 1–10.
45. Wang R.C., Smogorzewska A., de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres // Cell. 2004. V. 119. Nо. 3. P. 355–368.
46. Warmerdam D.O., Kanaar R. Dealing with DNA damage: relationships between checkpoint and repair pathways // Mutat Res. 2010. V. 704. Nо. 1/3. P. 2–11.
47. Yakubov L.A., Rogachev V.A., Likhacheva A.C. et al. Natural human gene correction by small extracellular genomic DNA fragments // Cell Cycle. 2007. V. 6. P. 2293–2301.