Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

МОЛЕКУЛЯРНЫЕ МАРКЕРЫ: ИСПОЛЬЗОВАНИЕ В СЕЛЕКЦИИ ЗЕРНОВЫХ КУЛЬТУРДЛЯ ИДЕНТИФИКАЦИИ, ИНТРОГРЕССИИ И ПИРАМИДИРОВАНИЯ ГЕНОВ

Аннотация

За последние десятилетия накоплен большой теоретический и практический опыт использования ДНК-маркеров для изучения генетического разнообразия, построения молекулярно-генетических карт, картирования генов и локусов количественных признаков и применения технологий молекулярного маркирования для создания коммерческих сортов и селекционных линий зерновых культур. На сегодняшний день молекулярные маркеры используются в основном для генотипирования растительного материала, интрогрессии и пирамидирования геномных районов, содержащих локусы хозяйственно важных признаков, контролируемых главными генами. Вклад новых технологий в селекцию признаков с мультигенным наследованием пока остается небольшим. Несмотря на значительный прогресс методов молекулярной генетики и геномики растений и интерес к этим методам со стороны специалистов-практиков, имеется большое число лимитирующих факторов, влияющих на внедрение новых технологий в практическую селекцию. В данной статье рассматриваются возможные области применения ДНК-маркеров в селекции зерновых культур и преимущества и ограничения практического использования молекулярных методов в сравнении с методами фенотипической селекции.

Об авторе

И. Н. Леонова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Список литературы

1. Беспалова Л.А., Васильев А.В., Аблова И.Б. и др. Применение молекулярных маркеров в селекции пшеницы в Краснодарском НИИСХ им. П.П. Лукьяненко // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 1. C. 37−43.

2. Гайнуллин Н.Р., Лапочкина И.Ф., Жемчужина А.И. и др. Использование фитопатологического и молекулярно-генетического методов для идентификации генов устойчивости к бурой ржавчине у образцов мягкой пшеницы с чужеродным генетическим материалом // Генетика. 2007. Т. 43. С. 1058−1064.

3. Тырышкин Л.Г. Наличие ДНК-маркеров как критерий постуляции Lr-генов устойчивости пшеницы Triticum aestivum L. к листовой ржавчине Puccinia triticina Erikss.: критический взгляд // С.-х. биология. 2010. № 3. С. 76−81.

4. Урбанович О.Ю., Малышев С.В., Долматович Т.В., Картель Н.А. Определение генов устойчивости к бурой ржавчине в сортах пшеницы (Triticum aestivum L.) с использованием молекулярных маркеров // Генетика. 2006. Т. 42. С. 675−683.

5. Хлесткина Е.А. Молекулярные методы анализа структурно-функциональной организации генов и геномов высших растений // Вавилов. журн. генет. и селекции. 2011. Т. 15. № 1. С. 757−768.

6. Basu S.K., Datta M., Sharma M., Kumar A. Haploid production technology in wheat and some selected higher plants // Austr. J. Crop Sci. 2011. V. 5. P. 1087−1093.

7. Blaszczyk L., Chelkowski J., Korzun V. et al. Verifi cation of STS markers for leaf rust resistance genes of wheat by seven European laboratories // Cell Mol. Biol. Lett. 2004. V. 9. P. 805−817.

8. Blaszczyk L., Kramer I., Ordon I. et al. Validity of selected DNA markers for breeding leaf rust resistant wheat // Cereal Res. Commun. 2008. V. 36. P. 201−213.

9. Brennan J.P., Martin P.J. Returns to investment in new breeding technologies // Euphytica. 2007. V. 157. P. 337−349.

10. Cakir M., Drake-Brockman F., Ma J. et al. Application and challenges of marker-assisted selection in the Western Australian Wheat Breeding Program. 2008. Available at: http://ses.library.usyd.au/bitstream/2123/3338/1/P279.pdf.

11. Canaran P., Buckler E.S., Glaubitz J.C. et al. Panzea: an update on new content and features // Nucl. Acids Res. 2008. V. 36 (Database issue): D1041-3.

12. Chelkowski J., Golka L., Stępień L. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher // J. Appl. Genet. 2003. V. 44. P. 323−338.

13. Chhuneja P., Kaur S., Garg T. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat // Theor. Appl. Genet. 2008. V. 116. P. 313–324.

14. Collard B.C.Y., Mackill D.J. Marker assisted selection: an approach for precision plant breeding in the twenty-fi rst century // Philos. Trans. R. Soc. B. 2008. V. 363. P. 557–572.

15. Delannay X., McLaren G., Ribaut J-M. Fostering molecular breeding in developing countries // Mol. Breed. 2012. V. 29. P. 857−873.

16. Eathington S.R., Crosbie T.M., Edwards M.D. et al. Molecular markers in a commercial breeding program // Crop Sci. 2007. V. 47. P. S154−S163.

17. Exner V., Hirsch-Hoffmann M., Gruissem W., Hennig L. PlantDB – a versatile database for managing plant research // Plant Methods. 2008. V. 4. P. 1.

18. Falke K.C., Frisch M. Power and false positive rate in QTL detection with near-isogenic line libraries // Heredity. 2011. V. 106. P. 576–584.

19. Falke K.C., Sušić Z., Hackauf B. et al. Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics // Theor. Appl. Genet. 2008. V. 117. P. 641–652.

20. Falke K.C., Miedaner T., Frisch M. Selection strategies for the development of rye introgression libraries // Theor. Appl. Genet. 2009. V. 119. P. 595–603.

21. Frisch M., Bohn M., Melchinger A.E. Comparison of selection strategies for marker assisted backcrossing of a gene // Crop Sci. 1999. V. 39. P. 1295–1301.

22. Frisch M., Melchinger A.E. Selection theory for marker-assisted backcrossing // Genetics. 2005. V. 170. P. 909–917.

23. Ganal M.W., Röder M.S. Microsatellite and SNP markers in wheat breeding // Genomics-assisted crop improvement / Eds R.K. Varshney, R. Tuberosa. N.Y.: Springer, 2007. P. 1−24.

24. Gupta P.K., Langridge P., Mir R.R. Marker-assisted wheat breeding: present status and future possibilities // Mol. Breed. 2010. V. 26. P. 145−161.

25. Hayden M.J., Kuchel H., Chalmers K.J. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2004. V. 109. P. 1641–1647.

26. Herzog E., Frisch M. Selection strategies for marker-assisted backcrossing with high-throughput marker systems // Theor. Appl. Genet. 2011. V. 123. P. 251−260.

27. Hospital F. Marker-assisted backcross breeding: a case-study in genotype building theory // Quantitative genetics, genomics, and plant breeding / Ed. M.S. Kang. Wallingford, UK, CABI Publishing, 2002. P. 135−142.

28. Huang X.Q., Börner A., Röder M.S., Ganal M.W. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers // Theor. Appl. Genet. 2002. V. 105. P. 699–707.

29. Kolmer J.A., Singh R.P., Garvin D.F. et al. Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm // Crop Sci. 2008. V. 48. P. 1841−1852.

30. Kuchel H., Fox R., Reinheimer J. et al. The successful application of a marker-assisted wheat breeding strategy // Mol. Breed. 2007. V. 20. P. 295–308.

31. Kuchel H., Fox R., Hollamby G. et al. The challenges of integrating new technologies into a wheat breeding programme. 2008. Available at http://ses.library.usyd.edu.au/bitstream/2123/3400/1/O54.pdf.

32. Landjeva S., Korzun V., Börner A. Molecular markers: actual and potential contributions to wheat genome

33. characterization and breeding // Euphitica. 2007. V. 156. P. 271−296.

34. Li Y., Zhou R., Wang J. et al. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat // Mol. Breed. 2012. V. 29. P. 627–643.

35. Liu S., Yu L-Xi, Singh R.P. et al. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26 // Theor. Appl. Genet. 2010. V. 120. P. 691–697.

36. Liu Y., He Z., Appels R., Xia X. Functional markers in wheat: current status and future prospects // Theor. Appl. Genet. 2012. V. 125. P. 1–10.

37. Marone D., Laido G., Gadaleta A. et al. A high-density consensus map of A and B wheat genomes // Theor. Appl. Genet. 2012. V. 125. P. 1619–1638.

38. McIntosh R.A., Yamazaki Y., Dubcovsky J. et al. Catalogue of Gene Symbols for Wheat. 2010. Supplement 2011, 2012. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/.

39. Milc J., Sala A., Bergamaschi S., Pecchioni N. A genotypic and phenotypic information source for marker-assisted selection of cereals: the CEREALAB database // Database. 2011. Article ID baq038, doi:10.1093/database/baq038.

40. Mohler V., Schwarz G. Genotyping tools in plant breeding: from restriction fragment length polymorphisms to single nucleotide polymorphisms // Molecular Marker Systems in Plant Breeding and Crop Improvement / Eds H. Lörtz, G. Wenzel. 2005. V. 55. P. 23–38.

41. Narain P. Quantitative genetics: past and present // Mol. Breed. 2010. V. 26. P. 135–143.

42. Neu C., Stein N., Keller B. Genetic mapping of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat // Genome. 2002. V. 45. P. 737–744.

43. Nocente F., Gazza L., Pasquini M. Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection // Euphytica. 2007. V. 155. P. 329–336.

44. Randhawa H.S., Mutti J.S., Kidwell K. et al. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection // PLoS One. 2009. V. 4. P. e5752.

45. Pardey P.G. A strategic look at global wheat production, productivity and R&D developments // Czech. J. Genet. Plant Breed. 2011. V. 47. P. S9–S19.

46. Prigge V., Melchinger A.E., Dhillon B.S., Frisch M. Efficiency gain of marker-assisted backcrossing by equentially increasing marker densities over generations // Theor. Appl. Genet. 2009. V. 119. P. 23–32.

47. Salameh A., Buerstmayr M., Steiner B. et al. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits // Mol. Breed. 2011. V. 28. P. 485–494.

48. Salina E., Dobrovolskaya O., Efremova T. et al. Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding // Plant Breed. 2003. V. 122. P. 116−119.

49. Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization // Funct. Integr. Genomics. 2006. V. 6. P. 71–80.

50. Schmierer D.A., Kandemir N., Kudrna D.A. et al. Molecular marker-assisted selection for enhanced yield in malting barley // Mol. Breed. 2004. V. 14. P. 463–473.

51. Serfl ing A., Krämer I., Lind V. et al. Diagnostic value of molecular markers for Lr genes and characterization of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance // Eur. J. Plant Pathol. 2011. V. 130. P. 559–575.

52. Singh S., Sidhu J.S., Huang N. et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106 // Theor. Appl. Genet. 2001. V. 102. P. 1011–1015.

53. Sivasamy M., Vinod, Tiwari S. et al. Introgression of useful linked genes for resistance to stem rust, leaf rust and powdery mildew and their molecular validation in wheat (Triticum aestivum L.) // Indian J. Genet. 2009. V. 69. P. 17–27.

54. Somers D.J. Molecular marker systems and their evaluation for cereal genetics // Cereal Genomics / Eds P.K. Gupta, R.K. Varshney. Netherlands: Kluwer Acad. Publ., 2004. P. 19–34.

55. Sourdille P., Singh S., Cadalen T. et al. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) // Func. Integr. Genomics. 2004. V. 4. P. 12–25.

56. Spielmeyer W., Sharp P.J., Lagudah E.S. Identifi cation and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.) // Crop Sci. 2003. V. 43. P. 333–336.

57. Tester M., Langridge P. Breeding technologies to increase crop production in a changing world // Science. 2010. V. 237. P. 818–822.

58. Timonova E.M., Leonova I.N., Röder M.S., Salina E.A. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome // Mol. Breed. 2013. V. 31. P. 123–136.

59. Torada A., Koike M., Ikeguchi S., Tsutsui I. Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.) // Genome. 2008. V. 51. P. 426–432.

60. van den Berg J.H., Chasalow S.D., Waugh R. RFLP mapping of plant nuclear genomes: planning of experiments, linkage map construction, and QTL mapping // Plant molecular biology – a laboratory manual. Berlin: Springer-Verlag, 1997. P. 334–396.

61. Varshney R.K., Graner A., Sorrells M.E. Genomics-assisted breeding for crop improvement // Trends Plant Sci. 2005. V. 10. P. 621–630.

62. Varshney R.K., Mahendar T., Aggarwal R.K., Börner A. Genic molecular markers in plants: development and applications // Genomics-Assisted Crop Improvement / Eds R.K. Varshney, R. Tuberosa. 2007. V. 1. P. 13–29.

63. Vida G., Gal M., Uhrin A. et al. Molecular markers for the identifi cation of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance // Euphytica. 2009. V. 170. P. 67–76.

64. William H.M., Trethowan R., Crosby-Galvan E.M. Wheat breeding assisted by markers: CIMMYT’s experience // Euphytica. 2007. V. 157. P. 307–319.

65. Xu Y. Developing marker-assisted selection strategies for breeding hybrid rice // Plant Breed. Rev. 2003. V. 23. P. 73–174.

66. Xu Y. Molecular plant breeding. Wallington, UK: CAB-international, 2010. 752 p.

67. Xu Y., Crouch J.H. Marker-assisted selection in plant breeding: from publication to practice // Crop Sci. 2008. V. 48. P. 391–407.

68. Xu Y., Lu Y., Xie C. et al. Whole-genome strategies for marker-assisted plant breeding. Mol. Breed. 2012. V. 29. P. 833-854.

69. Yang L., Wang W., Yang W., Wang M. Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes // Mol. Breed. 2013. V. 31. P. 767–775.

70. Zhao W., Canaran P., Jurkuta R. et al. Panzea: a database and resource for molecular and functional diversity in the maize genome // Nucl. Acids Res. 2006. V. 34. (Database issue). P. D752–D757.

71. Zhang W., Lukaszewski A.J., Kolmer J. et al. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum // Theor. Appl. Genet. 2005. V. 111. P. 573–582.


Рецензия

Просмотров: 1764


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)