Preview

Vavilov Journal of Genetics and Breeding

Advanced search

INTERRELATION OF PRIONS WITH NON-CODING RNAS

https://doi.org/10.18699/VJ18.377

Abstract

Prions are alternative infectious conformations for some cellular proteins. For the protein PrPC (PrP – prion protein, С – common), a prion conformation, called PrPSc (S – scrapie), is pathological. For example, in mammals the PrPSc prion causes transmissible spongiform encephalopathies accumulating in the brain tissues of PrPSc aggregates that have amyloid properties. MicroRNAs and long non-coding RNAs can be translated into functional peptides. These peptides can have a regulatory effect on genes from which their non-coding RNAs are transcribed. It has been assumed that prions, like peptides, due to the presence of specific domains, can also activate certain non-coding RNAs. Some of the activated non-coding RNAs can catalyze the formation of new prions from normal protein, playing their role in the pathogenesis of prion diseases. Confirmation of this assumption is the presence of the association of alleles of microRNA with the development of the disease, which indicates the role of the specific sequences of noncoding RNAs in the catalysis of prion formation. In the brain tissues of patients with prion diseases, as well as in exosomes containing an abnormal PrPSc isoform, changes in the levels of microRNA have been observed. A possible cause is the interaction of the spatial domains of PrPSc with the sequences of the non-coding RNA genes, which causes a change in their expression. MicroRNAs, in turn, affect the synthesis of long non-coding RNAs. We hypothesize that long noncoding RNAs and possibly microRNAs can interact with PrPC catalyzing its transformation into PrPSc. As a result, the number of PrPSc increases exponentially. In the brain of animals and humans, transposon activity has been observed, which has a regulatory effect on the differentiation of neuronal stem cells. Transposons form the basis of domain structures of long non-coding RNAs. In addition, they are important sources of microRNA. Since prion diseases can arise as sporadic and hereditary cases, and hereditary predisposition is important for the development of pathology, we hypothesize the role of individual features of activation of transposons in the pathogenesis of prion diseases. The activation of transposons in the brain at certain stages of development, as well as under the influence of stress, is reflected in the peculiarities of expression of specific non-coding RNAs that are capable of catalyzing the transition of the PrPC protein to PrPSc. Research in this direction can be the basis for targeted anti-microRNA therapy of prion diseases.

About the Authors

R. N. Mustafin
Bashkir State University
Russian Federation

Ufa



E. K. Khusnutdinova
Bashkir State University; Institute of Biochemistry and Genetics, Ufa Research Center RAS
Russian Federation


References

1. Anderson D.M., Anderson K.M., Cang C.L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R., Olson E.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160: 595-606.

2. Aprea J., Prenninger S., Dori M., Ghosh T., Monasor L.S., Wessendorf E., Zocher S., Massalini S., Alexopoulou D., Lesche M., Dahl A., Groszer M., Hiller M., Calegari F. Transcriptome sequencing during mouse brain development identifies long noncoding RNAs functionally involved in neurogenic commitment. EMBO J. 2013;32(24):3145-3160.

3. Battistuzzi F.U., Schneider K.A., Spencer M.K., Fisher D., Chaudhry S., Escalante A.A. Profiles of low complexity regions in Apicomplexa. BMC Evol. Biol. 2016;16:47. DOI 10.1186/s12862-016-0625-0.

4. Bellingham S.A., Coleman B.M., Hill A.F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937-10949.

5. Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24.

6. Borchert G.M., Holton N.W., Williams J.D., Hernan W.L., Bishop I.P., Dombosky J.A., Elste J.E., Gregoire N.S., Kim J.A., Koehler W.W., Lengerich J.C., Medema A.A., Nguyen M.A., Ower G.D., Ra rick M.A., Strong B.N., Tardi N.J., Tasker N.M., Wozniak D.J., Gatto C., Larson E.D. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements. 2011;1(1):8-17.

7. Burak K., Lamoureux L., Boese A., Majer A., Saba R., Niu Y., Frost K., Booth S.A. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptoma tic prion disease. Neurobiol. Dis. 2018;112:1-13. DOI 10.1016/j.nbd.2017.12.011.

8. Couzigou J.M., Andre O., Cuillotin B., Alexandre M., Combier J.P. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol. 2016;211(2):379-381.

9. Couzigou J.M., Lauressergues D., Becard G., Comier J.P. miRNAencoded peptides (miPEPs): A new tool to analyze the role of miRNAs in plant biology. RNA Biol. 2015;12:1178-1180.

10. De Cecco E., Legname G. The role of the prion protein in the internalization of α-synuclein amyloids. Prion. 2018;12(1):23-27. DOI 10.1080/19336896.2017.1423186.

11. Deng B., Cheng X., Li H., Qin J., Tian M., Jin G. Microarray expression profiling in the denervated hippocampus identified long noncoding RNAs functionally involved in neurogenesis. BMC Mol. Biol. 2017;18(1):15. DOI 10.1186/s12867-017-0091-2.

12. Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin. Neurosci. 2014;16(1):43-61.

13. Eigenbrod S., Frick P., Bertsch U., Mitteregger-Kretzschmar G., Mielke J., Maringer M., Piening N., Hepp A., Daude N., Windl O., Levin J., Giese A., Sakthivelu V., Tatzelt J., Kretzschmar H., Westaway D. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS ONE. 2017;12(12):e0188989.

14. Evans E.G., Pushie M.J., Markham K.A., Lee H.W., Millhauser G.L. Interaction between prion protein’s cooperbound octarepeat domain and charged C-terminal pocket suggests a mechanism for N-terminal regulation. Structure. 2016;24(7):1057-1067.

15. Faulkner G.J. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 2011;585(11):1589-1594.

16. Fitzgerald K.A., Caffrey D.R. Long noncoding RNAs in innate and adaptive immunity. Curr. Opin. Immunol. 2014;26:140-146.

17. Gao C., Shi Q., Wei J., Zhou W., Xiao K., Wang J., Shi Q., Dong X.P. The associations of two SNPs in miRNA146a and one SNP in ZBTB38-RASA2 with the disease susceptibility and the clinical features of the Chinese patients of sCJD and FFI. Prion. 2018;12(1): 34-41. DOI 10.1080/19336896.2017.1405885.

18. Gim J., Ha H., Ahn K., Kim D.S., Kim H.S. Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 2014;12(4):261-267.

19. Gonzalez-Montalban N., Makarava N., Savtchenko R., Baskakov I.V. Relationship between conformational stability and amplification efficiency of prions. Biochemistry. 2011;50(37):79337940.

20. Harbi D., Harrison P.M. Classifying prion and prion-like phenomena. Prion. 2014;8(2):pii27960.

21. Hennig S., Kong G., Mannen T., Sadowska A., Kobelke S., Blythe A., Knott G.J., Iyer K.S., Ho D., Newcombe E.A., Hosoki K., Goshima N., Kawaguchi T., Hatters D., Trinkle-Mulcahy L., Hirose T., Bond C.S., Fox A.H. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J. Cell. Biol. 2015;210(4):529-539.

22. Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976.

23. Kyle R.A. Amyloidosis: a convoluted story. Br. J. Haematol. 2001; 114(3):529-538.

24. Lauressergues D., Couzigou J.M., Clemente H.S., Martinez Y., Dunand C., Becard G., Combier J.P. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520(7545):90-93.

25. Li Y., Li C., Xia J., Jin Y. Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE. 2011;6:e19212.

26. Lorenzetti A.P., A de Antonio G.Y., Paschoal A.R., Domingues D.S. Plant TE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct. Integr. Genomics. 2016;16: 235-242.

27. Lu X., Sachs F., Ramsay L., Jacques P.E., Goke J., Bourque G., Ng H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014; 21(4):423-425.

28. Lv S., Pan L., Wang G. Commentary: primary transcripts of microRNAs encode regulatory peptides. Front. Plant Sci. 2016;7:1436.

29. Mabbott N.A. How do PrPSc prions spread between host species, and within hosts? Pathogens. 2017;6(4). pii: E60. DOI 10.3390/pathogens6040060.

30. March Z.M., King O.D., Shorter J. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drives of neurodegenerative disease. Brain Res. 2016;1647:9-18.

31. Mercer T.R., Dinger M.E., Sunkin S.M., Mehler M.F., Mattick J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA. 2008;105(2):716-721.

32. Michelitsch M.D., Weissman J.S. A census of glutamine/asparagines-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA. 2000;97(22): 11910-11915.

33. Montag J., Hitt R., Opitz L., Schulz-Schaeffer W.J., Hunsmann G., Motzkus D. Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol. Neurodegener. 2009;4:36. DOI 10.1186/1750-1326-4-36.

34. Murakami T., Ishiguro N., Haguchi K. Transmission of systemic AA amyloidosis in animals. Vet. Pathol. 2014;51(2):363-371.

35. Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o. (in Russian)

36. Nelson B.R., Makarewich C.A., Anderson D.M., Winders B.R., Trou pes C.D., Wu F., Reese A.L., McAnally J.R., Chen X., Kevalali E.T., Cannon S.C., Houser S.R., Bassel-Duby R., Olson E.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351(6270):271-275.

37. Notwell J.H., Chung T., Heavner W., Bejerano G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 2015;6:6644.

38. Richardson S.R., Morell S., Faulkner G.J. L1 retrotransposons and somatic mosaicism in the brain. Annu. Rev. Genet. 2014;48:127.

39. Rubenstein R., Wang K.K., Chiu A., Grinkina N., Sharma D.R., Agarwal S., Lin F., Yang Z. PrPC expression and calpain activity independently mediate the effects of closed head injury in mice. Behav. Brain Res. 2018;340:29-40.

40. Ruiz-Orera J., Messeguer X., Subirana J.A., Alba M.M. Long noncoding RNAs as a source of new peptides. Elife. 2014;3:e03523. DOI 10.7554/eLife.03523.

41. Saa P., Sferrazza G.F., Ottenberg G., Oelschlegel A.M., Dorsey K., Lasmezas C.I. Strain-specific role of RNAs in prion replication. J. Virol. 2012;86(19):10494-10504.

42. Saba R., Goodman C.D., Huzarewich R.L., Robertson C., Booth S.A. A miRNA signature of prion induced neurodegeneration. PLoS ONE. 2008;3:e3652.

43. Saba R., Gushue S., Huzarewich R.L., Manguiat K., Medina S., Robertson C., Booth S.A. MicroRNA 146a (miR-146a) is overexpressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS ONE. 2012;7(2):e30832.

44. Saba R., Medina S.J., Booth S.A. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum. Mutat. 2014;35(10):1233-1248.

45. Saghatelian A., Couso J.P. Discovery and сharacterization of smORF encoded bioactive polypeptides. Nat. Chem. Biol. 2015;11(12):909-916.

46. Sanz Rubio D., Lopez-Perez O., de Andres Pablo A., Bolea R., Osta R., Badiola J.J., Zaragoza P., Martin-Burriel I., Toivonen J.M. Increased circulating microRNAs miR-342-3p and miR-215p in natural sheep prion disease. J. Gen. Virol. 2017;98(2):305310.

47. Simoneau S., Thomzig A., Ruchoux M.M., Vignier N., Daus M.L., Poleggi A., Lebon P., Freire S., Durand V., Graziano S., Galeno R., Cardone F., Comoy E., Pocchiari M., Beekes M., Deslys J.P., Four nier J.G. Synthetic scrapie infectivity: interaction between recombinant PrP and scrapie brain-derived RNA. Virulence. 2015;6(2):132-144. DOI 10.4161/21505594.2014.989795.

48. Tetz G., Tetz V. Prion-like domains in phagobiota. Front. Microbiol. 2017;8:2239.

49. Timmes A.G., Moore R.A., Fischer E.R., Priora S.A. Recombinant prion refolded with lipid and RNA has the biochemical hallmarks of a prion but lacks in vivo infectivity. PLoS ONE. 2013;8(7):e71081.

50. Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci. 2014;23(11):1528-1539.

51. Upton K.R., Gerhardt D.J., Jesuadian J.S., Richardson S.R., Sanchez-Luque F.J., Bodea G.O., Ewing A.D., Salvador-Palomegue C., van der Knaap M.S., Brennan P.M., Vanderver A., Faulkner G.J. Ubi quitous L1 mosaicism in hippocampal neurons. Cell. 2015;161(2): 228-239.

52. Wang J., Li X., Wang L., Li J., Zhao Y., Bou G., Li Y., Jiao G., Shen X., Wei R., Liu S., Xie B., Lei L., Li W., Zhou Q., Liu Z. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep. 2016;17:1452-1470.

53. Zhang J., Mujahid H., Hou Y., Nallamilli B.R., Peng Z. Plant long ncRNAs: a new frontier for gene regulatory control. Am. J. Plant Sci. 2013;4(5):1038-1045. DOI 10.4236/ajps.2013.45128.


Review

Views: 984


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)