ANALYSIS OF DOMAIN SPECIFICITY OF THE PROTECTIVE CHIMERIC ANTIBODY ch14D5a AGAINST GLYCOPROTEIN E OF TICK-BORNE ENCEPHALITIS VIRUS
https://doi.org/10.18699/VJ18.383
Abstract
A drug for the prevention and therapy of tick-borne encephalitis virus is being developed on the basis of the protective chimeric antibody ch14D5a. At the same time, the epitope recognized by this antibody on the surface of glycoprotein E has not been localized yet. The aim of this work was to identify the domain of glycoprotein E, to which the protective antibody ch14D5a binds. As a result, four recombinant variants of glycoprotein E were generated using the bacterial expression system: (1) the rE protein containing the domains D1, D2, and D3 of glycoprotein E; (2) the rED1+2 protein containing domains D1 and D2; (3) the rED3_301 protein, which is domain D3 of glycoprotein E, and (4) the rED3_294 protein comprising domain D3 and a hinge region connecting domains D1 and D3. The rED3_294 and rED3_301 proteins were obtained in soluble monomeric form. The rE and rED1+2 proteins were extracted from the inclusion bodies of Escherichia coli. Using Western blot analysis and surface plasmon resonance analysis, it was demonstrated that the protective chimeric antibody ch14D5a and its Fab fragment bound specifically to domain D3 of glycoprotein E. Since the antibodies recognizing epitopes on the surface of domain D3 do not tend to cause antibody-dependent enhancement of the infection as compared to antibodies directed to domains D1 and D2, the data obtained confirm the promise of using the antibody ch14D5a in the development of a therapeutic preparation against the tick-borne encephalitis virus.
Keywords
About the Authors
I. K. BaykovRussian Federation
Novosibirsk
L. A. Emelyanova
Russian Federation
Novosibirsk
L. M. Sokolova
Russian Federation
Novosibirsk
E. M. Karelina
Russian Federation
A. L. Matveev
Russian Federation
I. V. Babkin
Russian Federation
Ya. А. Khlusevich
Russian Federation
V. F. Podgornyy
Russian Federation
Novosibirsk
N. V. Tikunova
Russian Federation
References
1. Barba-Spaeth G., Dejnirattisai W., Rouvinski A., Vaney M.C., Medits I., Sharma A., Simon-Lorière E., Sakuntabhai A., Cao-Lormeau V.M., Haouz A., England P., Stiasny K., Mongkolsapaya J., Heinz F.X., Screaton G.R., Rey F.A. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature. 2016;536(7614):48-53. DOI 10.1038/nature18938.
2. Baykov I.K., Matveev A.L., Stronin O.V., Ryzhikov A.B., Matveev L.E., Kasakin M.F., Richter V.A., Tikunova N.V. A protective chimeric antibody to tick-borne encephalitis virus. Vaccine. 2014; 32(29):3589-3594. DOI 10.1016/j.vaccine.2014.05.012.
3. Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr. Purif. 2012;82(1):240-251. DOI 10.1016/j.pep. 2011.10.009.
4. Carrió M.M., Villaverde A. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J. Bacteriol. 2005;187(10):35993601.
5. Chen Q. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol. J. 2015;10(5):671-680. DOI 10.1002/biot.201400428.
6. Crill W.D., Hughes H.R., Delorey M.J., Chang G.J. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One. 2009;4(4):e4991. DOI 10.1371/journal.pone.0004991.
7. Dai L., Song J., Lu X., Deng Y.Q., Musyoki A.M., Cheng H., Zhang Y., Yuan Y., Song H., Haywood J., Xiao H., Yan J., Shi Y., Qin C.F., Qi J., Gao G.F. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe. 2016;19(5):696-704. DOI 10.1016/j.chom.2016.04.013.
8. de Alwis R., Smith S.A., Olivarez N.P., Messer W.B., Huynh J.P., Wahala W.M., White L.J., Diamond M.S., Baric R.S., Crowe J.E., Jr., de Silva A.M. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. USA. 2012;109(19):7439-7444. DOI 10.1073/pnas.1200566109.
9. Dowd K.A., Pierson T.C. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology. 2011;411(2):306-315. DOI 10.1016/j.virol.2010.12.020.
10. Elahi M., Islam M.M., Noguchi K., Yohda M., Toh H., Kuroda Y. Computational prediction and experimental characterization of a “size switch type repacking” during the evolution of dengue envelope protein domain III (ED3). Biochim. Biophys. Acta. 2014;1844(3):585592. DOI 10.1016/j.bbapap.2013.12.013.
11. Ershova A.S., Gra O.A., Lyaschuk A.M., Grunina T.M., Tkachuk A.P., Bartov M.S., Savina D.M., Sergienko O.V., Galushkina Z.M., Gudov V.P., Kozlovskaya L.I., Kholodilov I.S., Gmyl L.V., Karganova G.G., Lunin V.G., Karyagina A.S., Gintsburg A.L. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice. BMC Infect. Dis. 2016;16(1):544.
12. Fink A.L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold. Des. 1998;3(1):R9-23.
13. Halstead S.B. Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. Microbiol. Spectr. 2014;2(6). DOI 10.1128/microbiolspec.AID-0022-2014.
14. Haslwanter D., Blaas D., Heinz F.X., Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog. 2017;13(9):e1006643. DOI 10.1371/journal.ppat.1006643.
15. Holbrook M.R., Shope R.E., Barrett A.D. Use of recombinant E protein domain III-based enzyme-linked immunosorbent assays for differentiation of tick-borne encephalitis serocomplex flaviviruses from mosquito-borne flaviviruses. J. Clin. Microbiol. 2004;42(9):4101-4110.
16. Jarmer J., Zlatkovic J., Tsouchnikas G., Vratskikh O., Strauß J., Aberle J.H., Chmelik V., Kundi M., Stiasny K., Heinz F.X. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination. J. Virol. 2014;88(23):1384513857. DOI 10.1128/JVI.02086-14.
17. Katzelnick L.C., Gresh L., Halloran M.E., Mercado J.C., Kuan G., Gordon A., Balmaseda A., Harris E. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6365):929932. DOI 10.1126/science.aan6836.
18. Kulkarni M.R., Numoto N., Ito N., Kuroda Y. Modeling and experimental assessment of a buried Leu-Ile mutation in dengue envelope domain III. Biochem. Biophys. Res. Commun. 2016;471(1):163168. DOI 10.1016/j.bbrc.2016.01.159.
19. Lisova O., Hardy F., Petit V., Bedouelle H. Mapping to completeness and transplantation of a group-specific, discontinuous, neutralizing epitope in the envelope protein of dengue virus. J. Gen. Virol. 2007;88(Pt.9):2387-2397.
20. Maillard R.A., Jordan M., Beasley D.W., Barrett A.D., Lee J.C. Long range communication in the envelope protein domain III and its effect on the resistance of West Nile virus to antibody-mediated neutralization. J. Biol. Chem. 2008;283(1):613-622.
21. Nybakken G.E., Oliphant T., Johnson S., Burke S., Diamond M.S., Fremont D.H. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature. 2005;437(7059):764-769.
22. Oliphant T., Engle M., Nybakken G.E., Doane C., Johnson S., Huang L., Gorlatov S., Mehlhop E., Marri A., Chung K.M., Ebel G.D., Kramer L.D., Fremont D.H., Diamond M.S. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 2005;11(5):522-530.
23. Oliphant T., Nybakken G.E., Austin S.K., Xu Q., Bramson J., Loeb M., Throsby M., Fremont D.H., Pierson T.C., Diamond M.S. Induction of epitope-specific neutralizing antibodies against West Nile virus. J. Virol. 2007;81(21):11828-11839.
24. Pierson T.C., Kielian M. Flaviviruses: braking the entering. Curr. Opin. Virol. 2013;3(1):3-12. DOI 10.1016/j.coviro.2012.12.001.
25. Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375(6529):291-298.
26. Rey F.A., Stiasny K., Vaney M.C., Dellarole M., Heinz F.X. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep. 2018;19(2):206-224. DOI 10.15252/embr.201745302.
27. Robinson L.N., Tharakaraman K., Rowley K.J., Costa V.V., Chan K.R., Wong Y.H., Ong L.C., Tan H.C., Koch T., Cain D., Kirloskar R., Viswanathan K., Liew C.W., Tissire H., Ramakrishnan B., Myette J.R., Babcock G.J., Sasisekharan V., Alonso S., Chen J., Lescar J., Shriver Z., Ooi E.E., Sasisekharan R. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell. 2015;162(3):493-504. DOI 10.1016/j.cell.2015.06.057.
28. Roehrig J.T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 2003;59:141-175.
29. Sánchez M.D., Pierson T.C., McAllister D., Hanna S.L., Puffer B.A., Valentine L.E., Murtadha M.M., Hoxie J.A., Doms R.W. Characterization of neutralizing antibodies to West Nile virus. Virology. 2005; 336(1):70-82.
30. Sun H., Chen Q., Lai H. Development of antibody therapeutics against flaviviruses. Int. J. Mol. Sci. 2017;19(1). pii: E54. DOI 10.3390/ijms19010054.
31. Tikunova N.V., Matveev A.L., Baykov I.K., Khlusevich Y.A., Stronin O.V., Bondarenko D.A., Murashev A.N. Preclinical study of a preparation developed on the base of chimeric antibody against tickborne encephalitis virus. Trudy Instituta Poliomielita i Virusnykh Entsefalitov im. M.P. Chumakova RAMN. Meditsinskaya Virusologiya = Medical Virology (Moscow). 2015;29(2):111. (in Russian)
32. Tsekhanovskaya N.A., Matveev L.E., Rubin S.G., Karavanov A.S., Pressman E.K. Epitope analysis of tick-borne encephalitis (TBE) complex viruses using monoclonal antibodies to envelope glycoprotein of TBE virus (persulcatus subtype). Virus Res. 1993;30(1):1-16.
33. Volk D.E., Chavez L., Beasley D.W., Barrett A.D., Holbrook M.R., Gorenstein D.G. Structure of the envelope protein domain III of Omsk hemorrhagic fever virus. Virology. 2006;351(1):188-195.
34. Volk D.E., May F.J., Gandham S.H., Anderson A., Von Lindern J.J., Beasley D.W., Barrett A.D., Gorenstein D.G. Structure of yellow fever virus envelope protein domain III. Virology. 2009;394(1):12-18. DOI 10.1016/j.virol.2009.09.001.
35. Vratskikh O., Stiasny K., Zlatkovic J., Tsouchnikas G., Jarmer J., Karrer U., Roggendorf M., Roggendorf H., Allwinn R., Heinz F.X. Dissection of antibody specificities induced by yellow fever vaccination. PLoS Pathog. 2013;9(6):e1003458. DOI 10.1371/journal.ppat.1003458.
36. Wahala W.M., Kraus A.A., Haymore L.B., Accavitti-Loper M.A., de Silva A.M. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology. 2009; 392(1):103-113. DOI 10.1016/j.virol.2009.06.037.
37. Wang J., Bardelli M., Espinosa D.A., Pedotti M., Ng T.S., Bianchi S., Simonelli L., Lim E.X.Y., Foglierini M., Zatta F., Jaconi S., Beltramello M., Cameroni E., Fibriansah G., Shi J., Barca T., Pagani I., Rubio A., Broccoli V., Vicenzi E., Graham V., Pullan S., Dowall S., Hewson R., Jurt S., Zerbe O., Stettler K., Lanzavecchia A., Sallusto F., Cavalli A., Harris E., Lok S.M., Varani L., Corti D. A human Bispecific antibody against Zika virus with high therapeutic potential. Cell. 2017;171(1):229-241.e15. DOI 10.1016/j.cell.2017.09.002.
38. Wang P., Yang X. Neutralization efficiency is greatly enhanced by bivalent binding of an antibody to epitopes in the V4 region and the membrane-proximal external region within one trimer of human immunodeficiency virus type 1 glycoproteins. J. Virol. 2010;84(14): 7114-7123. DOI 10.1128/JVI.00545-10.
39. White M.A., Liu D., Holbrook M.R., Shope R.E., Barrett A.D., Fox R.O. Crystallization and preliminary X-ray diffraction analysis of Langat virus envelope protein domain III. Acta Crystallogr. 2003; D59:1049-1051. DOI 10.1107/S0907444903004475.
40. Wu K.P., Wu C.W., Tsao Y.P., Kuo T.W., Lou Y.C., Lin C.W., Wu S.C., Cheng J.W. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J. Biol. Chem. 2003;278(46): 46007-46013.
41. Yang J., Zhang J., Chen W., Hu Z., Zhu J., Fang X., Yuan W., Li M., Hu X., Tan Y., Hu F., Rao X. Eliciting cross-neutralizing antibodies in mice challenged with a dengue virus envelope domain III expressed in Escherichia coli. Can. J. Microbiol. 2012;58(4):369-380. DOI 10.1139/w11-137.
42. Zhao H., Fernandez E., Dowd K.A., Speer S.D., Platt D.J., Gorman M.J., Govero J., Nelson C.A., Pierson T.C., Diamond M.S., Fremont D.H. Structural basis of Zika virus-specific antibody protection. Cell. 2016;166(4):1016-1027. DOI 10.1016/j.cell.2016.07.020.
43. Zidane N., Dussart P., Bremand L., Bedouelle H. Cross-reactivities between human IgMs and the four serotypes of dengue virus as probed with artificial homodimers of domain-III from the envelope proteins. BMC Infect. Dis. 2013;13:302. DOI 10.1186/1471-2334-13-302.