Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Современные подходы к синтезу генов: аспекты синтеза олигонуклеотидов, ферментативной сборки, проверки последовательностей и коррекции ошибок

https://doi.org/10.18699/VJ18.387

Аннотация

Синтетическая биология – быстро развивающаяся отрасль науки, нацеленная на создание биологических систем с предсказанными свойствами. При этом она использует достижения современной биологии, программирования и компьютерного моделирования, а также инженерной отрасли для создания биологических объектов, обладаю­щих набором заранее заданных пользовательских свойств. Развитие синтетической биологии было обусловлено множеством технологических разработок в каждой из упомя­нутых отраслей. Так, значительное снижение стоимости технологии секвенирования ДНК привело к наработке больших объемов данных о генетических последователь­ностях различных организмов. Снижение стоимости син­теза последовательностей ДНК в соответствии с законом Мура позволило создавать библиотеки синтетических генов, представляющие потенциальный интерес в работе генных инженеров без необходимости использования традиционных и трудоемких методов молекулярной био­логии. Благодаря развитию системной биологии сфор­мировано глубокое понимание взаимосвязей и функций природных биологических моделей, а также построены прогностические модели, описывающие молекулярные процессы на клеточном и системном уровнях. Комбина­ция вышеперечисленных факторов создала возможность осознанного изменения природных биологических систем. В данном обзоре обсуждается современное состояние подходов к синтезу олигонуклеотидов для последующей сборки генных конструкций и к ферментативной сборке генов. Освещены аспекты использования различного программного обеспечения для подбора олигонуклеоти­дов для последующей сборки генов, проверки точности синтезированной последовательности генов, а также ис­правления ошибок.

Об авторах

Г. Ю. Шевелев
Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук; Новосибирский государственный университет
Россия
Новосибирск


Д. В. Пышный
Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук; Новосибирский государственный университет
Россия
Новосибирск


Список литературы

1. Adrio J.-L., Demain A.L. Recombinant organisms for production of industrial products. Bioeng. Bugs. 2010;1(2):116-131. DOI 10.4161/bbug.1.2.10484.

2. Agarwal K.L., Büchi H., Caruthers M.H., Gupta N., Khorana H.G., Kleppe K., Kumar A., Ohtsuka E., Rajbhandary U.L., Van De Sande J.H., Sgaramella V., Weber H., Yamada T. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature. 1970;227:27-34. DOI 10.1038/227027a0.

3. Andrus A., Kuimelis G.R. Analysis and purification of synthetic nucleic acids using HPLC. Curr. Protoc. Nucleic Acid Chem. 2001;1(1):unit 10.5. DOI 10.1002/0471142700.nc1005s01.

4. Bang D., Church G.M. Gene synthesis by circular assembly amplification. Nat. Methods. 2008;5(1):37-39. DOI 10.1038/nmeth1136.

5. Beaucage S.L., Caruthers M.H. Deoxynucleoside phosphoramidites – a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981;22(20):1859-1862. DOI 10.1016/S00404039(01)90461-7.

6. Binkowski B.F., Richmond K.E., Kaysen J., Sussman R.M., Belshaw P.J. Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Res. 2005;33(6):1-8. DOI 10.1093/nar/gni053.

7. Birla B.S., Chou H.H. Rational design of high-number dsDNA fragments based on thermodynamics for the construction of full-length genes in a single reaction. PLoS One. 2015;10(12):e0145682. DOI 10.1371/journal.pone.0145682.

8. Blair S., Richmond K., Rodesch M., Bassetti M., Cerrina F. A scalable method for multiplex LED-controlled synthesis of DNA in capillaries. Nucleic Acids Res. 2006;34(16). DOI 10.1093/nar/gkl641.

9. Bode M., Khor S., Ye H., Li H.M., Ying J.Y. TmPrime: Fast, flexible oli¬gonucleotide design software for gene synthesis. Nucleic Acids Res. 2009;37(Web Server issue):W214-W221. DOI 10.1093/nar/gkp461.

10. Boeke J.D., Church G., Hessel A., Kelley N.J., Arkin A., Cai Y., Carlson R., Chakravarti A., Cornish V.W., Holt L., Isaacs F.J., La¬joie M., Lessor T., Lunshof J., Maurano M.T., Mitchell L.A., Rine J., Rosser S., Sanjana N.E., Silver P.A., Valle D., Wang H., Way J.C., Yang L. The Genome Project-Write. Science. 2016;353(6295):126127. DOI 10.1126/science.aaf6850.

11. Bosch J.R., Grody W.W. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J. Mol. Diagn. 2008; 10(6):484-492. DOI 10.2353/jmoldx.2008.080027.

12. Böhlke K.F., Pisani M., Vorgias C.E., Frey B., Sobek H., Rossi M., Antranikian G. PCR performance of the B-type DNA polymerase from the thermophilic euryarchaeon Thermococcus aggregans im¬proved by mutations in the Y-GG/A motif. Nucleic Acids Res. 2000; 28(20):3910-3917. DOI 10.1093/nar/28.20.3910.

13. Carr P.A., Park J.S., Lee Y., Yu T., Zhang S., Jacobson J.M. Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. 2004;32(20):e162. DOI 10.1093/nar/gnh160.

14. Cheong W.C., Lim L.S., Huang M.C., Bode M., Li M.H. New insights into the de novo gene synthesis using the automatic kinetics switch approach. Anal. Biochem. 2010;406:51-60. DOI 10.1016/j.ab.2010. 06.036.

15. Cherry J., Nieuwenhuijsen B.W., Kaftan E.J., Kennedy J.D., Chanda P.K. A modified method for PCR-directed gene synthesis from large number of overlapping oligodeoxyribonucleotides. J. Biochem. Biophys. Methods. 2008;70:820-822. DOI 10.1016/j.jprot. 2007.12.009.

16. Chow B.Y. Emig C.J. Jacobson J.M. Photoelectrochemical synthesis of DNA microarrays. Proc. Natl. Acad. Sci. USA. 2009;106(36):1521915224. DOI 10.1073/pnas.0813011106.

17. Church G.M. Genomes for all. Sci. Am. 2006;294(1):47-54.

18. Currin A., Swainston N., Day P.J., Kell D.B. SpeedyGenes: An improved gene synthesis method for the efficient production of error-corrected, synthetic protein libraries for directed evolution. Protein Eng. Des. Sel. 2014;27(9):273-280. DOI 10.1093/protein/gzu029.

19. Desai N.A., Vepatu S. Single-strand-specific nucleases. FEMS Microbiol. Rev. 2003;26:457-91.

20. Dietrich R., Wirsching F., Opitz T., Schwienhorst A. Gene assembly based on blunt-ended double-stranded DNA-modules. Biotechnol. Tech. 1998;12(1):49-54. DOI 10.1023/A:1008855526226.

21. Egeland R.D., Southern E.M. Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication. Nucleic Acids Res. 2005;33(14):1-7. DOI 10.1093/nar/gni117.

22. Ellington A., Pollard J.D., Jr. Introduction to the synthesis and purification of oligonucleotides. Curr. Protoc. Nucleic Acid Chem. 2000; App.3:A.3C.1-A.3C.22. DOI 10.1002/0471142700.nca03cs00.

23. Engler C., Romy K., Sylvestre M. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3(11): e3647. DOI 10.1371/journal.pone.0003647.

24. Gao X., Yo P., Keith A., Ragan T.J., Harris T.K. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. 2003;31(22):2-11. DOI 10.1093/nar/gng143.

25. Garbisu C., Olatz G., Epelde L., Grohmann E., Alkorta I. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front. Microbiol. 2017;8:1966. DOI 10.3389/fmicb.2017.01966.

26. Gibson D.G. Enzymatic Assembly of Overlapping DNA Fragments. In: Voigt C. (Ed.). Synthetic Biology. Pt. B: Computer Aided Design and DNA Assembly. (Ser. Methods in Enzymology. Vol. 498). Acad. Press, 2011;349-361. DOI 10.1016/b978-0-12-385120-8.00015-2.

27. Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E.A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., Merryman C., Young L., Noskov V.N., Glass J.I., Venter J.C., Hutchison III C.A., Smith H.O. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215-1220. DOI 10.1126/science.1151721.

28. Gibson D.G., Smith H.O., Hutchison III C.A., Venter J.C., Merryman C. Chemical synthesis of the mouse mitochondrial genome. Nat. Methods. 2010;7(11):901-903. DOI 10.1038/nmeth.1515.

29. Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C.A., Smith H.O., Hutchison III C.A. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6(5):343345. DOI 10.1038/nmeth.1318.

30. Hall B.H., Micheletti J.M., Satya P., Ogle K., Pollard J., Ellington A.D. Design, synthesis, and amplification of DNA pools for in vitro selection. Curr. Protoc. Mol. Biol. 2009;88(1):24.2.1-24.2.27. DOI 10.1002/0471142727.mb2402s88.

31. Hall N. Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. 2007;210:1518-1525. DOI 10.1242/jeb.001370.

32. Hoover D.M., Lubkowski J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 2002;30(10):e43. DOI 10.1093/nar/30.10.e43.

33. Huang M.C., Ye H., Kuan Y.K., Li M.-H., Ying J.Y. Integrated two-step gene synthesis in a microfluidic device. Lab. Chip. 2009;9:276-285. DOI 10.1039/b807688j.

34. Hutchison C.A., Chuang R.-Y., Noskov V.N., Nacyra A.-G., Deerinck T.J., Ellisman M.H., Gill J., Kannan K., Karas B.J., Ma L., Pelletier J.F., Qi Z.-Q., Richter R.A., Strychalski E.A., Sun L., Suzuki Y., Tsvetanova B., Wise K.S., Smith H.O., Glass J.I., Merry¬man C., Gibson D.G., Venter J.C. Design and synthesis of a minimal bacterial genome. Science. 2016;351(6280):aad6253. DOI 10.1126/science.aad6253.

35. Knight T. Idempotent Vector Design for Standard Assembly of Biobricks. MIT Artificial Intelligence Laboratory, 2003;1-11.

36. Kodumal S.J., Patel K.G., Reid R., Menzella H.G., Welch M., Santi D.V. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. USA. 2004;101(44):15573-15578. DOI 10.1073/pnas.0406911101.

37. Kosuri S., Church G. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods. 2014;11(5):499-507. DOI 10.1038/ nmeth.2918.

38. Kosuri S., Eroshenko N., Leproust E.M., Super M., Way J., Li B.L., Church G.M. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol. 2010; 28(12):1295-1299. DOI 10.1038/nbt.1716.

39. Lausted C., Dahl T., Warren C., King K., Smith K., Johnson M., Saleem R., Aitchison J., Hood L., Lasky S.R. POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer. Genome Biol. 2004;5(8):R58.1-R58.17. DOI 10.1186/gb-2004-58-r58.

40. Lee C.C., Snyder T.M., Quake S.R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Res. 2010;38(8):2514-2521. DOI 10.1093/nar/gkq092.

41. LeProust E.M., Peck B.J., Spirin K., McCuen H.B., Moore B., Namsaraev E., Caruthers M.H. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 2010;38(8):2522-2540. DOI 10.1093/nar/gkq163.

42. Li M.Z., Elledge S.J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods. 2007;4(3):251256. DOI 10.1038/nmeth1010.

43. Liang X., Peng L., Baek C.-H., Katzen F. Single step BP/LR combined Gateway reactions. BioTechniques. 2013;55(5):265-268. DOI 10.2144/000114101.

44. Lim H., Cho N., Ahn J., Park S., Jang H., Kim H., Han H., Ji H.L., Bang D. Highly selective retrieval of accurate DNA utilizing a pool of in situ-replicated DNA from multiple next-generation sequencing platforms. Nucleic Acids Res. 2018;46(7):e40. DOI 10.1093/nar/gky016.

45. Lorimer D., Raymond A., Walchli J., Mixon M., Barrow A., Wallace E., Grice R., Burgin A., Stewart L. Gene composer: database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol. 2009;9:36. DOI 10.1186/1472-6750-9-36.

46. Louw T.M., Whitney S.E., Termaat J.R., Pienaar E., Viljoen H.J. Oligonucleotide optimization for DNA synthesis. AIChE J. 2011;57(7): 1912-1918. DOI 10.1002/aic.12410.

47. Ma S., Saaem I., Tian J. Error correction in gene synthesis technology. Trends Biotechnol. 2012a;30(3):147-154. DOI 10.1016/j.tibtech.2011.10.002.

48. Ma S., Tang N., Tian J. DNA synthesis, assembly and applications in synthetic biology. Curr. Opin. Chem. Biol. 2012b;16:260-267. DOI 10.1016/j.cbpa.2012.05.001.

49. Matteucci M.D., Caruthers M.H. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 1981;103(11):3185-3191. DOI 10.1021/ja00401a041.

50. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 1986;51:263-273. DOI 10.1101/SQB.1986.051.01.032.

51. Nowak R.M., Wojtowicz-Krawiec A., Plucienniczak A. DNASynth: A computer program for assembly of artificial gene parts in decreasing temperature. BioMed. Res. Int. 2015;Article ID:413262. DOI 10.1155/2015/413262.

52. Paddon C.J., Keasling J.D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 2014;12:355-367. DOI 10.1038/nrmicro3240

53. Pengpumkiat S., Koesdjojo M., Rowley E.R., Mockler T.C., Remcho V.T. Rapid synthesis of a long double-stranded oligonucleotide from a single-stranded nucleotide using magnetic beads and an oligo library. PLoS One. 2016;11(3):e0149774. DOI 10.1371/journal.pone.0149774.

54. Plesa C., Sidore A.M., Lubock N.B., Zhang D., Kosuri S. Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science. 2018;369(6373):343-347. DOI 10.1126/science.aao5167.

55. Prodromou C., Pearl L.H. Recursive PCR: A novel technique for total gene synthesis. Protein Eng. Des. Sel. 1992;5(8):827-829. DOI 10.1093/protein/5.8.827.

56. Quan J., Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One. 2009;4(7):e6441. DOI 10.1371/journal.pone.0006441.

57. Richardson S.M., Nunley P., Yarrington R.M., Boeke J.D., Bader J.S. GeneDesign 3.0 is an updated synthetic biology toolkit. Nucleic Acids Res. 2010;38(8):2603-2606. DOI 10.1093/nar/gkq143.

58. Richmond K.E., Li M.H., Rodesche M.J., Patel M., Lowe A.M., Kim C., Chu L.L., Venkataramaian N., Flickinger S.F., Kaysen J., Belshaw P.J., Sussman M.R., Cerrina F. Amplification and assembly of chip-eluted DNA (AACED): A method for high-throughput gene synthesis. Nucleic Acids Res. 2004;32(17):5011-5018. DOI 10.1093/nar/gkh793.

59. Rouillard J., Lee W., Truan G., Gao X., Zhou X., Gulari E. Gene2Oligo: Oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res. 2004;32(Web Server issue):W176-W180. DOI 10.1093/nar/gkh401.

60. Ryan J., Brown E.L., Sekiya T., Kiipper H., Khorana H.G. Total synthesis of a tyrosine suppressor tRNA gene. XVIII. Biological activity and transcription, in vitro, of the cloned gene. J. Biol. Chem. 1979; 254(13):5817-5826.

61. Saaem I., Ma S., Quan J., Tian J. Error correction of microchip synthesized genes using Surveyor nuclease. Nucleic Acids Res. 2012; 40(3):e23. DOI 10.1093/nar/gkr887.

62. Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell ane¬mia. Science. 1985;230:1350-1354. DOI 10.1126/science.2999980.

63. Sanger F., Coulson A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975; 94:441-448. DOI 10.1016/0022-2836(75)90213-2.

64. Schmidt T.L., Beliveau B.J., Uca Y.O., Theilmann M., Cruz F.D., Wu C.T., Shih W.M. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 2015;6: 8634. DOI 10.1038/ncomms9634.

65. Schmitz C., Reetz M.T. Solid-phase enzymatic synthesis of oligonucleotides. Org. Lett. 1999;1(11):1729-1731.

66. Schuster S.C. Next-generation sequencing transforms today’s biology. Nat. Methods. 2008;5(1):16-18. DOI 10.1038/nmeth1156.

67. Schwartz J.J., Lee C., Shendure J. Accurate gene synthesis with tag-di¬rected retrieval of sequence-verified DNA molecules. Nat. Methods. 2012;9(9):913-915. DOI 10.1038/nmeth.2137.

68. Sequeira A.F., Guerreiro C.I., Vincentelli R., Fontes C.M. T7 endonuclease I mediates error correction in artificial gene synthesis. Mol. Biotechnol. 2016;58(8-9):573-584. DOI 10.1007/s12033-0169957-7.

69. Shendure J., Ji H. Next generation DNA sequencing. Eng. Life Sci. 2008;26(10):1135-1345. DOI 10.1002/elsc.201600121.

70. Shetty R.P., Drew E., Knight T.F. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2008;2:5. DOI 10.1186/1754-1611-2-5.

71. Sleight S.C., Bartley B.A., Lieviant J.A., Sauro H.M. In-Fusion BioBrick assembly and re-engineering. Nucleic Acids Res. 2010;38(8): 2624-2636. DOI 10.1093/nar/gkq179.

72. Smith J., Modrich P. Removal of polymerase-produced mutant sequences from PCR products. Proc. Natl. Acad. Sci. USA. 1997;94: 6847-6850.

73. Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B.H., Hood L.E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674-679. DOI 10.1038/321674a0.

74. Stemmer W.P.C., Crameri A., Ha K.D., Brennan T.M., Heyneker H.L. Single-step assembly of a gene and entire plasmid from large num¬bers of oligodeoxyribonucleotides. Gene. 1995;164:49-53. DOI 10.1016/0378-1119(95)00511-4.

75. Szybalski W., Kim S.C., Hasan N., Podhajska A.J. Class-IIS restriction enzymes – a review. Gene. 1991;100:13-26. DOI 10.1016/03781119(91)90345-C.

76. TerMaat J.R., Pienaar E., Whitney S.E., Mamedov T.G., Subramanian A. Gene synthesis by integrated polymerase chain assembly and PCR amplification using a high-speed thermocycler. J. Microbiol. Meth. 2009;79(3):295-300. DOI 10.1016/j.mimet.2009.09.015.

77. Tucker T., Marra M., Friedman J.M. Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet. 2009;85:142154. DOI 10.1016/j.ajhg.2009.06.022.

78. Villalobos A., Ness J.E., Gustafsson C., Minshull J., Govindarajan S. Gene Designer: A synthetic biology tool for constructuring artificial DNA segments. BMC Bioinformatics. 2006;7:285. DOI 10.1186/1471-2105-7-285.

79. Wang H.H., Isaacs F.J., Carr P.A., Sun Z.Z., Xu G., Forest C.R., Church G.M. Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009;460:894-898. DOI 10.1038/nature08187.

80. Wasilkowski D., Swedziol Z., Mrozik A. The applicability of genetically modified microorganisms in bioremediation of contaminated environments. Chemik. 2012;8(66):817-826.

81. Wu G., Wolf J.B., Ibrahim A.F., Vadasz S., Gunasinghe M., Freeland S.J. Simplified gene synthesis: A one-step approach to PCR-based gene construction. J. Biotechnol. 2006;124:496-503. DOI 10.1016/j.jbiotec.2006.01.015.

82. Xiong A.-S., Yao Q.-H., Peng R.-H., Duan H., Li X., Fan H.Q., Cheng Z.-M., Li Y. PCR-based accurate synthesis of long DNA sequences. Nat. Protoc. 2006;1(2):791-797. DOI 10.1038/nprot.2006.103.

83. Yarimizu T., Nakamura M., Hoshida H., Akada R. Screening of accurate clones for gene synthesis in yeast. J. Biosci. Bioeng. 2015; 119(3):251-259. DOI 10.1016/j.jbiosc.2014.08.006.

84. Ye H., Huang M.C., Li M.H., Ying J.Y. Experimental analysis of gene assembly with TopDown one-step real-time gene synthesis. Nucleic Acids Res. 2009;37(7):e51. DOI 10.1093/nar/gkp118.

85. Young L., Dong Q. Two-step total gene synthesis method. Nucleic Acids Res. 2004;32(7):e59. DOI 10.1093/nar/gnh058.

86. Zhou X., Cai S., Hong A., You Q., Yu P., Sheng N., Srivannavit O., Muranjan S., Rouillard J.M., Xia Y., Zhang X., Xiang Q., Ganesh R., Zhu Q., Matejko A., Gulari E., Gao X. Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res. 2004;2(18):54095417. DOI 10.1093/nar/gkh879.


Рецензия

Просмотров: 2013


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)