Alien introgressions and chromosomal rearrangements do not affect the activity of gliadin-coding genes in hybrid lines of Triticum aestivum L. × Aegilops columnaris Zhuk
https://doi.org/10.18699/VJ18.388
Abstract
Using chromosome C-banding and electrophoresis of grain storage proteins, gliadins, 17 Triticum aestivumAegilops columnaris lines with substitutions of chromosomes of homoeologous groups 1 and 6 were examined. Based on their high polymorphism, gliadins were used to identify alien genetic material. For all of the lines examined, electrophoretic analysis of gliadin spectra confirmed substitution of wheat chromosomes 6A, 6D or 1D for the homoeologous Aegilops chromosomes of genomes Uс or Xс. The substitution manifested in the disappearance of the products of gliadin-coding genes on chromosomes 6A, 6D or 1D with the simultaneous appearance of the products of genes localized on alien chromosomes of genomes Uс or Xс. Thus, Aegilops chromosomes were shown to be functionally active in the alien wheat genome. The absence of alien genes expression in the lines carrying a long arm deletion in chromosome 6Xc suggested that the gliadin-coding locus moved from the short chromosome arm (its characteristic position in all known wheat species) to the long one. This is probably associated with a large species-specific pericentric inversion. In spite of losing a part of its long arm and combination with a non-homologous chromosome of a different genome (4BL), chromosome 1D was fully functioning. For Aegilops, the block type of gliadin components inheritance was shown, indicating similarity in the structural organization of gliadin-coding loci in these genera. Based on determining genetic control of various polypeptides in the electrophoretic aegilops spectrum, markers to identify Ae. columnaris chromosomes 1Xс, 6Xс and 6Uс were constructed.
About the Authors
A. Yu. Novoselskaya-DragovichRussian Federation
Moscow
A. A. Yankovskaya
Russian Federation
Moscow
E. D. Badaeva
Russian Federation
Moscow
References
1. Badaeva E.D., Amosova A.V., Samatadze T.E., Zoshchuk S.A., Shostak N.G., Chikida N.N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant. Syst. Evol. 2004;246(1-2):45-76.
2. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant. Syst. Evol. 1994;192:117-145.
3. Badaeva E.D., Ruban A.S., Shishkina A.A., Sibikeev S.N., Druzhin A.E., Surzhikov S.A., Dragovich A.Y. Genetic classification of Aegilops columnaris Zhuk. (2n = 4x = 28, UcUcXcXc) chromosomes based on FISH analysis and substitution patterns in common wheat × Ae. columnaris introgressive lines. Genome. 2018;61(2):131-143. DOI 10.1139/gen-2017-0186.
4. Damania A.B., Altunji H., Dhaliwal H.S. Evaluation of Aegilops spp. for drought and frost tolerance. Genetic Resources Unit Annual Report, ICARDA. 1992;45-46.
5. Dvořák J. Genome analysis in the Triticum-Aegilops alliance. In: Slinkard A.E. (Ed.) Proc. of the 9th Int. Wheat Genetics Symp., 2–7 Aug. 1998. Saskatoon, Saskatchewan: Printcrafters Inc., 1998; 8-11.
6. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59-87.
7. Garg M., Tanaka H., Ishikawa N., Takata K., Yanaka M., Tsujimoto H. A novel pair of HMW glutenin subunits from Aegilops searsii improves quality of hexaploid wheat. Cereal Chem. J. 2008;86:26-32.
8. Garg M., Tsujimoto H., Gupta R.K., Kumar A., Kaur N., Kumar R., Chunduri V., Sharma N.K., Chawla M., Sharma S., Mundey J.K. Chromosome specific substitution lines of Aegilops geniculata alter parameters of bread making quality of wheat. PLoS One. 2016;11: e0162350.
9. Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 1991;34:830-839.
10. Gill B.S., Sharma C., Raupp W.J., Browder L.E., Heachett J.H., Harvey T.L., Moseman J.G., Waines J.G. Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly, and greenbug. Plant Dis. 1985;69:314-316.
11. Kasarda D.D., Bernardin J.E., Qualset C.O. Relationship of gliadin protein components to chromosomes in hexaploid wheats (Triticum aestivum L.). Proc. Natl. Acad. Sci. USA. 1976;73:3646-3650.
12. McIntosh R.A., Yamazaki Y., Dubkovsky G., Rogers J., Morris C.F., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. The 12th Int. Wheat Genetics Symp., 8–13 Sept. 2013. Yokohama, Japan, 2013;395.
13. Metakovsky E.V., Novoselskaya A.Yu. Gliadin allele identification in common wheat. 1. Methodological aspects. J. Genet. Breed. 1991; 45:319-323.
14. Molnár-Láng M., Ceoloni C., Doležel J. (Eds.). Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Switzerland: Springer Int. Publ., 2015.
15. Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines. In: Tuberosa R., Graner A., Frison E. (Eds.). Genomics of Plant Genetic Resources. Vol. 1. Managing, Sequencing and Mining Genetic Tesources. Springer, 2014;255-284.
16. Monneveux P., Zaharieva M., Rekika D. The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C., Nachit M., Di Fonzo N., Araus J.L. (Eds.). Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: CIHEAM, 2000;71-81.
17. Novoselskaya-Dragovich A.Yu. Genetics and genomics of wheat: storage proteins, ecological plasticity, and immunity. Russ. J. Genet. 2015;51(5):476-490. DOI 10.1134/S102279541505004X.
18. Novoselskaya-Dragovich A.Yu., Krupnov V.A., Saifulin R.A., Puhalskiy V.A. Dynamics of genetic variation at gliadin coding loci in Sara¬tov cultivars of common wheat Triticum aestivum L. for over eight decades of scientific breeding. Russ. J. Genet. 2003;39(10):1130-1137.
19. Rakszegi M., Molnár I., Lovegrove A., Darkó É., Farkas A., Láng L., Bedo Z., Doležel J., Molnár-Láng M., Shewry P. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 2017;8:1529. DOI 10.3389/fpls.2017.01529.
20. Rawat N., Neelam K., Tiwari V.K., Randhawa G.S., Friebe B., Gill B.S., Dhaliwal H.S. Development and molecular characterization of wheat-Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome. 2011;54:943-953.
21. Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1-19.
22. Shepherd K.W. Chromosomal control of endosperm proteins in wheat and rye. In: Finlay K.W., Sherherd K.W. (Eds.). Proc. of the 3rd Int. Wheat Genetics Symp. Canberra: Austral. Acad. Sci., 1968;86-96.
23. Shishkina A.A., Dragovich A.Yu., Rouban A.S., Sibikeev S.N., Druzhin A.E., Badaeva E.D. Development of the genetic classification of Aegilops columnaris Zhuk. chromosomes based on the analysis of introgression lines Triticum aestivum × Ae. columnaris. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(2):241-249. DOI 10.18699/VJ17.243 (in Rus¬sian)
24. Singh N.K., Shepherd K.W. Linkage mapping of genes controlling endosperm storage proteins in wheat: 1. Genes on the short arms of group 1 chromosomes. Theor. Appl. Genet. 1988;75:628-641.
25. Tiwari V., Rawat N., Neelam K., Kumar S., Randhawa G., Dhaliwal H. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor. Appl. Genet. 2010;121(2):259-269.
26. Upelniek V.P., Novoselskaya-Dragovich A. Yu., Shishkina A.A., Mel’nik V.A., Dedova L.V., Kudrjavtsev A.M. The laboratory analysis of wheat seed proteins. Technological instruction. Diagnostics of varietal identity and purity of seed wheat. Moscow: Vavilov Institute of General Genetics Publ., 2013. (in Russian)
27. Warham E.J., Mujeeb-Kazi A., Rosas V. Karnal bunt (Tilletia indica) resistance screening of Aegilops species and their practical utilization for Triticum aestivum improvement. Can. J. Plant Pathol. 1986; 8:65-70.