Изучение генетического полиморфизма диплоидной пшеницы Triticum boeoticum Boiss. с использованием SSR-маркеров


https://doi.org/10.18699/VJ18.389

Полный текст:


Аннотация

Диплоидная пшеница Triticum boeoticum Boiss. (геном АА) – потен­циальный источник новых ценных аллелей для улучшения возде­лываемых видов пшеницы. В связи с этим оценка внутривидового разнообразия T. boeoticum и ДНК-паспортизация образцов этого вида является актуальной задачей. В настоящей работе исследо­вано генетическое разнообразие более 60 образцов T. boeoticum с использованием 11 микросателлитных маркеров. По данным SSR-анализа было идентифицировано 83 аллеля, в среднем на­блюдалось по 7.5 аллелей на локус. Величины ожидаемой (HE) и наблюдаемой (HO) гетерозиготности варьировали в пределах 0.17–0.89 и 0.00–0.74 при среднем показателе HE = 0.52 и HO = 0.13 соответственно. Значение PIC для каждого локуса находилось в пределах 0.17–0.88 и в среднем равнялось 0.49. Для всех изучен­ных локусов были обнаружены уникальные аллели. Кластерный анализ позволил объединить изученные образцы в пять основных групп, расстояния между группами варьировали от 0 до 1, что указывает на высокий уровень генетических различий в исследу­емой коллекции. Согласно анализу PCoA, было образовано пять основных групп и выявлены некоторые соответствия с дендро­граммой. При обобщении полученных данных PCoA и кластерного анализа отмечена слабая генетическая дифференциация изучен­ной коллекции T. boeoticum. Корреляция генетического расстояния с географическим происхождением выявлена лишь для образцов диплоидной пшеницы T. boeoticum из Ирана. Анализ образцов показывает широкое разнообразие T. boeoticum по микросателлит­ным локусам. Полученные нами данные расширяют представле­ния и дают дополнительную информацию о генетической структу­ре коллекции и разнообразии изученных образцов T. boeoticum.


Об авторе

М. А. Аббасов
Институт генетических ресурсов Национальной академии наук Азербайджана
Азербайджан
Баку


Список литературы

1. Abouzied H.M., Eldemery S.M.M., Abdellatif K.F. SSR-based genetic diversity assessement in tetraploid and hexaploid wheat populations. Br. Biotechnol. J. 2013;3:390-404.

2. Aliyev R.T., Abbasov M.A., Mammadov A.C. Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turk. J. Biol. 2007;31(3):173-180.

3. Anker C.C., Niks R.E. Prehaustorial resistance to the wheat leaf rust fungus, Puccinia triticina, in Triticum monococcum (s.s.). Euphytica. 2001;117:3-12.

4. Babayeva S., Akparov Z., Abbasov M., Mammadov A., Zaifizadeh M., Street K. Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medikus) germplasm using SSR fingerprinting. Genet. Res. Crop. Evol. 2009;56:293-298.

5. Bahrai S., Jaradat A.A., Jaradat A.A. Diversity in seed storage proteins of T. boeoticum and T. urartu. Triticeae III. Proc. 3rd Int. Triticeae Symp. Aleppo, Syria, 4–8 May. 1998:237-243.

6. Bohn M., Utz H.F., Melchinger A.E. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci. 1999;39: 228-237.

7. Bossolini E., Krattinger S.G., Keller B. Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor. Appl. Genet. 2006;113:1049-1062.

8. Burkhamer R.L., Lanning S.P., Martens R.J., Martin J.N., Talbert L.E. Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci. 1998;38:234-248.

9. Chen H.B., Martin J.M., Lavin M., Talbert L.E. Genetic diversity in hard red spring wheat based on sequence-tagged-site PCR markers. Crop Sci. 1994;34:1629-1632.

10. Cifci E.A., Yagdi K. Study of genetic diversity in wheat (Triticum aestivum) varieties using random amplified polymorphic DNA (RAPD) analysis. Turk. J. Field Crops. 2012;17:91-95.

11. Cox T.S., Lookhart G.L., Walker D.E., Harrell L.G., Albers L.D., Rodgers D.M. Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide-gel electrophoretic patterns. Crop Sci. 1985;25:1058-1063.

12. Dreisigacker S., Zhang P., Warburton M.L., Van Ginkel M., Hoisington D., Bohn M., Melchinger A.E. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci. 2004;44(2):381-388.

13. Drikvand R., Bihamta M.R., Najafian G., Ebrahimi A. Investigation of genetic diversity among bread wheat cultivars (Triticum aestivum L.) using SSR markers. J. Agric. Sci. 2012;5(1):122.

14. Dvorak J., Terlizzi P.D., Zhang H.B., Resta P. The evolution of polyploid wheats: identification of the A genome donor species. Genome. 1993;36:21-31.

15. Farouji A., Khodayari H., Saeidi H., Rahiminejad M.R. Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia. 2015; 1:52-60.

16. Figliuolo G., Perrino P. Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. Genet. Resour. Crop Evol. 2004;51:519-527.

17. Gascuel O. Concerning the NJ algorithm and its unweighted version, UNJ. Mathematical Hierarchies and Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Provi-dence: Am. Math. Soc. 1997;37:149-170.

18. Ghaderi A., Adams M.W., Nassib A.M. Relationship between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean. Crop Sci. 1984;24:37-24.

19. Hajiyev E.S., Akparov Z.I., Aliyev R.T., Saidova S.V., Izzatullayeva V.I., Babayeva S.M., Abbasov M.A. Genetic polymorphism of durum wheat (Triticum durum Desf.) accessions of Azerbaijan. Russ. J. Genet. 2015;51:863-870.

20. Hammer K., Filatenko A.A., Korzun V. Microsatellite markers – a new tool for distinguishing diploid wheat species. Genet. Resour. Crop Evol. 2000;47(5):497-505.

21. Harjit-Singh X., Dhaliwal H.S., Yifru-Teklu Y., Singh H. Germplasm enhancement through wide hybridization and molecular breeding. 11th Regional Wheat Workshop Eastern Central and Southern Af¬rica, Addis-Abeba, Ethiopia, September. 2000;18-22.

22. Heun M., Schafer-Pregl R., Klawan D., Castagna R., Accerbi M., Borghi B., Salamini F. Site of Einkorn wheat domestication identi¬fied by DNA fingerprinting. Science. 1997;278:1312-1314.

23. Izzatullayeva V.İ., Akparov Z.I., Babayeva S.M., Ojaghi J., Abbasov M.A. Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turk. J. Biol. 2014;38:429-438.

24. Kojima T., Nagaoka T., Noda K., Ogihara Y. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers. Theor. Appl. Genet. 1998;96:37-45.

25. Konarev V.G., Gavrilyuk I.P., Peneva T.I., Konarev A.V., Khakimova A.G., Migushova E.F. On the nature and origin of wheat genomes with regard to the data on the biochemistry and immunochemistry of grain proteins. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 1976;11(5):656-665. (in Russian)

26. Korzun V., Röder M., Ganal M., Filatenko A., Hammer K. Genetic diversity and evolution of the diploid wheat T. urartu, T. boeoticum and T. monococcum revealed by microsatellite markers. Schr. Genet. Ressour. 1998;8:244-247.

27. Kumar S., Kumar V., Kumari P., Singh A.K., Singh R. DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. J. Environ. Biol. 2016;37(2):319.

28. Liu K., Muse S.V. PowerMarker: Integrated analysis enviornment for genetic marker data. Bioinformatic. 2005;21:2128-2129.

29. Malaki M., Naghavi M.R., Alizadeh H., Potki P., Kazemi M., Pirseyedi S.M., Mardi M., Tabatabaei F. Study of genetic variation in wild diploid wheat (Triticum boeoticum) from Iran using AFLP markers. Iran. J. Biotech. 2006;4:269-274.

30. Malik R., Tiwari R., Arora A., Kumar P., Sheoran S., Sharma P., Singh R., Tiwari V., Sharma I. Genotypic characterization of elite Indian wheat genotypes using molecular markers and their pedigree analysis. Aust. J. Crop Sci. 2013;7:561-567.

31. McLauchlan A., Henry R.J., Issac P.G., Edwards K.J. Microsatellite analysis in cultivated hexaploid wheat and wild wheat rela¬tives. Ed. R.J. Henry. Plant Genotyping: The DNA Fingerprinting of Plants. Wallingford, UK: CABI Publishing, CAB International, 2001;147-159.

32. Medini M., Hamza S., Rebai A., Baum M. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genet. Resour. Crop Evol. 2005;52:21-31.

33. Mizumoto K., Hirosawa S., Nakamura C., Takumi S. Nuclear and chloroplast genome genetic diversity in the wild einkorn wheat, Triticum urartu, revealed by AFLP and SSLP analyses. Hereditas. 2002;137: 208-214.

34. Moghaddam M., Ehdaie B., Waines J.G. Genetic diversity in populations of wild diploid wheat Triticum urartu Tum. ex. Gandil. revealed by isozyme markers. Genet. Res. Crop Evol. 2000;47(3):323-334.

35. Motawei M.I., Al-Doss A.A., Moustafa K.A. Genetic diversity among selected wheat lines differing in heat tolerance using molecular markers. J. Food Agr. Environ. 2007;5:180-183.

36. Mousavifard S.S., Saeidi H., Rahiminejad M.R., Shamsadini M. Molecular analysis of diversity of diploid Triticum species in Iran us¬ing ISSR markers. Genet. Resour. Crop Evol. 2014. DOI 10.1007/s10722-014-0160-z.

37. Naghavi M., Ebrahimi A., Sabokdast M., Mardi M. Assessment of genetic variation among five hordeum species from Iran. Cer. Res. Commun. 2011;39(4):487-496. http://www.jstor.org/stable/23792314

38. Naghavi M.R., Malaki M., Alizadeh H., Pirseiedi M., Mardi M. An assessment of genetic diversity in wild diploid wheat Triticum boeoti¬cum from west of Iran using RAPD, AFLP and SSR markers. J. Agr. Sci. Tech. 2009;11:585-598.

39. Naghavi M.R., Mardi M., Ramshini H.A., Fazelinasab B. Comparative analyses of the genetic diversity among bread wheat genotypes based on RAPD and SSR markers. Iran. J. Biotechnol. 2004;2:195-202.

40. Ovesná J., Kučera L., Bocková R., Holubec V. Characterisation of powdery mildew resistance donors within Triticum boeoticum accessions using RAPDs. Czech. J. Genet. Plant Breed. 2002;38:117-124.

41. Perrier X., Jacquemoud-Collet J.P. DARwin software http://darwin.cirad.fr/darwin.2006

42. Pestsova E., Ganal M.W., Roder M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 2000;43:689-697.

43. Prasad M., Varshney R.K., Roy J.K., Balyan H.S., Gupta P.K. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 2000; 100:584-592.

44. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998; 149:2007-2023.

45. Song Q.J., Fickus E.W., Cregan P.B. Characterization of trinucleotide SSR motifs in wheat. Theor. Appl. Genet. 2002;104:286-293.

46. Song Q.J., Shi J.R., Singh S., Fickus E.W., Costa J.M., Lewis J., Gill B.S., Ward R., Cregan P.B. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 2005;110: 550-560.

47. Španić V., Buerstmayr H., Drezner G. Assessment of genetic diversity of wheat genotypes using microsatellite markers. Period. Biol. 2012; 114(1):37-42.

48. Sud S., Bains N.S., Nanda G.S. Genetic relationships among wheat genotypes, as revealed by microsatellite markers and pedigree analysis. J. Appl. Genet. 2005;46:375-379.

49. Takumi S., Nasuda S., Liu Y.G., Tsunewaki K. Wheat phylogeny determined by RFLP analysis of nuclear DNA. Einkorn Wheat. Jpn. J. Genet. 1993;68:73-79.

50. Wang X., Luo G., Yang W., Li Y., Sun J., Zhan K., Liu D., Zhang A. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu. BMC Plant. Biol. 2017;17:112.

51. Zeb B., Khan I.A., Ali S., Bacha S., Mumtaz S., Swati Z.A. Study on genetic diversity in Pakistani wheat varieties using simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 2009;8:4016-4019.

52. Zeshan A., Afzal M., Alghamdi S., Kettener K., Mubashar A., Mubushar M., Shakeel A. Evaluation of genetic diversity amongthe Paki¬stani wheat (Triticum aestivum L.) lines through random molecular markers. Braz. Arch. Biol. Technol. 2016;59:e16160282.

53. Zhang D., Bai G., Zhu C., Yu J., Carver B.F. Genetic diversity, population structure, and linkage disequilibrium in U.S. elite winter wheat. Plant Genome. 2010;3:117-127.

54. Zohary D., Hopf M. Domestication of plants in the Old World: the Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley. 2nd ed. Oxford: New York: Clarendon Press, 1993.


Дополнительные файлы

Просмотров: 275

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)