Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Comparative analysis of the complete plastomes of garlic Allium sativum and bulb onion Allium cepa

https://doi.org/10.18699/VJ18.390

Abstract

Sequencing and comparative characterization of plant plastid genomes, or plastomes, is an important tool for modern phylogenetic and taxonomic studies, as well as for understanding the plastome evolution. The genus Allium L. (family Amaryllidaceae) incorporates more than 900 species, includes economically signifi­cant vegetable crops such as garlic A. sativum, onion A. cepa, leek A. porrum, etc. In this work, the plastome of garlic A. sativum has been completely sequenced. The A. sativum plastome is 153172 bp in size. It consists of a large unique (LSC, 82035 bp) and small unique (SSC, 18015 bp) copies, separated by inverted repeats (IRa and IRb) of 26561 bp each. In the garlic plastome, 134 genes have been annotated: 82 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and 6 pseudogenes. Comparative analysis of A. sativum and A. cepa plastomes reveals differences in the sizes of structural elements and spacers at the inverted repeat bound­aries. The total numbers of genes in A. sativum and A. cepa are the same, but the gene composition is dif­ferent: the rpl22 gene is functional in A. sativum, being a pseudogene in A. cepa; conversely, the rps16 gene is a pseudogene in A. sativum and a protein-coding gene in A. cepa. In the A. sativum and A. cepa plastomes, 32 SSR sequences have been identified. More than half of them are dinucleotides, and the remaining are tetra-, penta-, and hexanucleotides at the same time, trinucleotides were absent. The compared plastomes differ in the numbers of certain SSRs, and some are present in only one of the species.

About the Authors

M. A. Filyushin
Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
Russian Federation
Moscow


A. M. Mazur
Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
Russian Federation
Moscow


A. V. Shchennikova
Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
Russian Federation
Moscow


Е. Z. Kochieva
Federal Research Centre “Fundamentals of Biotechnology”, RAS, Institute of Bioengineering
Russian Federation
Moscow


References

1. Ricroch A., Yockteng R., Brown S.C., Nadot S. Evolution of genome size across some cultivated Allium species. Genome. 2005;48(3): 511-520.

2. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19(5): 455-477. DOI 10.1089/cmb.2012.0021.

3. Roy S., Ueda M., Kadowaki K., Tsutsumi N. Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species. Genes Genet. Syst. 2010;85(5):319-326.

4. Bellot S., Renner S.S. The plastomes of two species in the endoparasite genus Pilostyles (Apodanthaceae) each retain just five or six possibly functional genes. Genome Biol. Evol. 2016;8(1):189-201. DOI 10.1093/gbe/evv251.

5. Seregin A.P., Anačkov G., Friesen N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 2015;178(1):67-101. DOI 10.1111/boj.12269.

6. Brandvain Y., Wade M.J. The functional transfer of genes from the mi¬tochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization. Genetics. 2009;182(4):11291139. DOI 10.1534/genetics.108.100024.

7. Shaw J., Lickey E.B., Schilling E.E., Small R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 2007;94(3):275-288. DOI 10.3732/ajb.94.3.275.

8. Chung S.M., Gordon V.S., Staub J.E. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome. 2007;50: 215-225.

9. Shi C., Liu Y., Huang H., Xia E.-H., Zhang H.-B., Gao L.-Z. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms. PLoS ONE. 2013;8(3):e59620. DOI 10.1371/journal.pone.0059620.

10. Daniell H., Lin C.-S., Yu M., Chang W.-J. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17(1):134. DOI 10.1186/s13059-016-1004-2.

11. Sinitsyna T.A., Herden T., Friese N. Dated phylogeny and biogeography of the Eurasian Allium section Rhizirideum (Amaryllidaceae). Plant Syst. Evol. 2016;302:1311-1328. DOI 10.1007/s00606-0161333-3.

12. Dong W., Xu C., Cheng T., Lin K., Zhou S. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of saxifragales. Genome Biol. Evol. 2013;5(5):989-997.

13. Siniauskaya M.G., Danilenko N.G., Lukhanina N.V., Shymkevich A.M., Davydenko O.G. Expression of the chloroplast genome: modern concepts and experimental approaches. Russ. J. Genet.: Appl. Res. 2016;6(5):491-509. DOI 10.1134/S2079059716050117.

14. DOI 10.1093/gbe/evt063. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19:11-15.

15. Sloan D.B. Using plants to elucidate the mechanisms of cytonuclear co-evolution. New Phytol. 2015;205(3):1040-1046. DOI 10.1111/ nph.12835.

16. Filyushin М.А., Beletsky A.V., Mazur A.M., Kochieva E.Z. The complete plastid genome sequence of garlic Allium sativum L. Mitochodrial DNA Part B: Resources. 2016;1(1):831-832. DOI 10.1080/23802359.2016.1247669.

17. Steele P.R., Hertweck K.L., Mayfield D., McKain M.R., LeebensMack J., Pires J.C. Quality and quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae. Am. J. Bot. 2012;99(2):330-348. DOI 10.3732/ajb.1100491.

18. Filyushin M.A., Beletsky A.V., Mazur A.M., Kochieva E.Z. Characterization of the complete plastid genome of lop-sided onion Allium obliquum L. (Amaryllidaceae). Mitochondrial DNA Part B: Re-sources. 2018;3(1):393-394. DOI 10.1080/23802359.2018.1456369.

19. Sveinsson S., Cronk Q. Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). BMC Evol. Biol. 2014;14:228. DOI 10.1186/s12862-014-0228-6.

20. Friesen N., Fritsch R.M., Blattner F.R. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso. 2006;22:372-395.

21. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001; 11(8):1441-1452.

22. Goremykin V.V., Hirsch-Ernst K.I., Wolfl S., Hellwig F.H. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol. Biol. Evol. 2004;21:1445-1454.

23. von Kohn C.M., Kielkowska A., Havey M.J. Sequencing and annotation of the chloroplast DNAs of normal (N) male-fertile and male-sterile (S) cytoplasms of onion and single nucleotide polymorphisms distinguishing these cytoplasms. Genome. 2013;56(12):737-742. DOI 10.1139/gen-2013-0182.

24. Herden T., Hanelt P., Friesen N. Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae). Mol. Phylogenet. Evol. 2016;95:79-93. DOI 10.1016/j.ympev.2015.11.004.

25. Wheeler E.J., Mashayekhi S., McNeal D.W., Columbus J.T., Pires J.C. Molecular systematics of Allium subgenus Amerallium (Amaryllidaceae) in North America. Am. J. Bot. 2013;100(4):701-711. DOI 10.3732/ajb.1200641.

26. Jones M.G., Hughes J., Tregova A., Milne J., Tomsett A.B., Collin H.A. Biosynthesis of the flavour precursors of onion and garlic. J. Exp. Bot. 2004;55(404):1903-1918.

27. Wick R.R., Schultz M.B., Zobel J., Holt K.E. Bandage: interactive vi¬sualisation of de novo genome assemblies. Bioinformatics. 2015; 31(20):3350-3352. DOI 10.1093/bioinformatics/btv383.

28. Keller J., Rousseau-Gueutin M., Martin G.E., Morice J., Boutte J., Coissac E., Ourari M., Aïnouche M., Salmon A., Cabello-Hurtado F., Aïnouche A. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res. 2017;24(4):343-358. DOI 10.1093/dnares/dsx006.

29. Wicke S., Schneeweiss G.M., dePamphilis C.W., Müller K.F., Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 2011; 76(3-5):273-297. DOI 10.1007/s11103-011-9762-4.

30. Kim S., Park J.Y., Yang T. Comparative analysis of the complete chloroplast genome sequences of a normal male-fertile cytoplasm and two different cytoplasms conferring cytoplasmic male sterility in on¬ion (Allium cepa L.). J. Hortic. Sci. Biotechnol. 2015;90(4):459-468. DOI 10.1080/14620316.2015.11513210.

31. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33(7):1870-1874. DOI 10.1093/molbev/msw054.

32. Lohse M., Drechsel O., Kahlau S., Bock R. OrganellarGenome DRAWa suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:575-581. DOI 10.1093/nar/gkt289.

33. Lowe T.M., Eddy S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955-964.

34. Mardanov A.V., Ravin N.V., Kuznetsov B.B., Samigullin T.H., Antonov A.S., Kolganova T.V., Skyabin K.G. Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organi-zation and phylogenetic relationships to other angiosperms. J. Mol. Evol. 2008;66(6):555-564. DOI 10.1007/s00239-008-9091-7.

35. Ravin N.V., Gruzdev E.V., Beletsky A.V., Mazur A.M., Prokhortchouk E.B., Filyushin M.A., Kochieva E.Z., Kadnikov V.V., Mar¬danov A.V., Skryabin K.G. The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys. BMC Plant Biol. 2016; 16(Suppl. 3):153-161. DOI 10.1186/s12870-016-0929-7.

36. Redwan R.M., Saidin A., Kumar S.V. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biol. 2015;15:196. DOI 10.1186/s12870-015-0587-1.

37. Ricroch A., Yockteng R., Brown S.C., Nadot S. Evolution of genome size across some cultivated Allium species. Genome. 2005;48(3): 511-520.

38. Roy S., Ueda M., Kadowaki K., Tsutsumi N. Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species. Genes Genet. Syst. 2010;85(5):319-326.

39. Seregin A.P., Anačkov G., Friesen N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 2015;178(1):67-101. DOI 10.1111/boj.12269.

40. Shaw J., Lickey E.B., Schilling E.E., Small R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 2007;94(3):275-288. DOI 10.3732/ajb.94.3.275.

41. Shi C., Liu Y., Huang H., Xia E.-H., Zhang H.-B., Gao L.-Z. Contradiction between plastid gene transcription and function due to complex posttranscriptional splicing: an exemplary study of ycf15 function and evolution in angiosperms. PLoS ONE. 2013;8(3):e59620. DOI 10.1371/journal.pone.0059620.

42. Sinitsyna T.A., Herden T., Friese N. Dated phylogeny and biogeography of the Eurasian Allium section Rhizirideum (Amaryllidaceae). Plant Syst. Evol. 2016;302:1311-1328. DOI 10.1007/s00606-0161333-3.

43. Siniauskaya M.G., Danilenko N.G., Lukhanina N.V., Shymkevich A.M., Davydenko O.G. Expression of the chloroplast genome: modern concepts and experimental approaches. Russ. J. Genet.: Appl. Res. 2016;6(5):491-509. DOI 10.1134/S2079059716050117.

44. Sloan D.B. Using plants to elucidate the mechanisms of cytonuclear co-evolution. New Phytol. 2015;205(3):1040-1046. DOI 10.1111/ nph.12835.

45. Steele P.R., Hertweck K.L., Mayfield D., McKain M.R., LeebensMack J., Pires J.C. Quality and quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae. Am. J. Bot. 2012;99(2):330-348. DOI 10.3732/ajb.1100491.

46. Sveinsson S., Cronk Q. Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). BMC Evol. Biol. 2014;14:228. DOI 10.1186/s12862-014-0228-6.

47. Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001; 11(8):1441-1452.

48. von Kohn C.M., Kielkowska A., Havey M.J. Sequencing and annotation of the chloroplast DNAs of normal (N) male-fertile and male-sterile (S) cytoplasms of onion and single nucleotide polymorphisms distinguishing these cytoplasms. Genome. 2013;56(12):737-742. DOI 10.1139/gen-2013-0182.

49. Wheeler E.J., Mashayekhi S., McNeal D.W., Columbus J.T., Pires J.C. Molecular systematics of Allium subgenus Amerallium (Amaryllidaceae) in North America. Am. J. Bot. 2013;100(4):701-711. DOI 10.3732/ajb.1200641.

50. Wick R.R., Schultz M.B., Zobel J., Holt K.E. Bandage: interactive vi¬sualisation of de novo genome assemblies. Bioinformatics. 2015; 31(20):3350-3352. DOI 10.1093/bioinformatics/btv383.

51. Wicke S., Schneeweiss G.M., dePamphilis C.W., Müller K.F., Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 2011; 76(3-5):273-297. DOI 10.1007/s11103-011-9762-4.


Review

Views: 1094


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)