Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Популяционно-генетическая структура красавки Anthropoides virgo в России

https://doi.org/10.18699/VJ18.398

Полный текст:

Аннотация

Красавка (Anthropoides virgo Linnaeus, 1758) – широко распро­страненный вид журавлей Евразии, гнездящийся в степной и полупустынной зонах от Юго-Восточной Украины до Северного Китая. Красавка, гнездящаяся в европейской и азиатской частях ареала, зимует в Северо-Восточной Африке и Индии соответ­ственно. Вследствие фрагментации мест обитания, гнездовая часть ареала вида подразделена на несколько географических группировок. С использованием данных 10 микросателлитных локусов и контрольного региона митохондриальной ДНК длиной 1 003 пар оснований были получены первые результаты оценки генетического разнообразия и дифференциации пяти гнездовых группировок на территории России: 1) азовочерноморской; 2) прикаспийской; 3) волго-уральской; 4) южно-сибирской и 5) восточноазиатской. В целом красавка демонстрирует высокий уровень наблюдаемой (HO = 0.638 ± 0.032) и ожидае­мой (HE = 0.657 ± 0.023) гетерозиготности и гаплотипического разнообразия (h = 0.960). Генетическая дифференциация гнездовых группировок оказалась низкой как по микросателлит­ным локусам (FST по Райту – 0.052, по данным AMOVA – 0.016), так и по митохондриальной ДНК (FST = 0.040). Не обнаружено очевидной значимой популяционной структуры A. virgo ни по многолокусным микросателлитным генотипам при анализе STRUCTURE, ни по гаплотипам контрольного региона в NETWORK. Несмотря на высокое гаплотипическое разнообразие, нуклеотидное разнообразие A. virgo оказалось низким (0.0033 ± 0.0003). Отрицательные, но незначимые тесты Таджимы и Фу не подтвердили недавней популяционной экспансии красавки в ее эволюционной истории в отличие от других журавлей Палеарктики, например серого (Grus grus) и черного (G. monacha). Эти данные указывают на более стабильные условия для кра­савки в степной зоне в плейстоцене по сравнению с бореаль­ными и субарктическими гнездовыми частями ареалов других видов журавлей.

Об авторах

Е. А. Мудрик
Институт общей генетики им. Н.И. Вавилова Росси йской академии наук
Россия
Москва


Е. И. Ильяшенко
Институт проблем экологии и эволюции им. А.Н. Северцова Российской академии наук
Россия
Москва


О. А. Горошко
Государственный природный биосферный заповедник «Даурский»; Институт природных ресурсов, экологии и криологии Сибирского отделения Российской академии наук
Россия
Нижний Цасучей, Чита


Т. А. Кашенцева
Питомник редких видов журавлей Окского государственного биосферного заповедника
Россия
Брыкин Бор


М. В. Корепов
Ульяновский государственный педагогический университет им. И.Н. Ульянова
Россия
Ульяновск


И. А. Сикорский
Природный заповедник «Опукский»
Россия
Феодосия


Г. С. Джамирзоев
Институт экологии горных территорий им. А.К. Темботова Российской академии наук; Государственный природный заповедник «Дагестанский»
Россия
Нальчик, Махачкала


В. Ю. Ильяшенко
Институт проблем экологии и эволюции им. А.Н. Северцова Российской академии наук
Россия
Москва


Д. В. Политов
Институт общей генетики им. Н.И. Вавилова Росси йской академии наук
Россия
Москва


Список литературы

1. Avise J.C. Phylogeography: The history and formation of species. Cambridge: Harvard Univ. Press, 2000.

2. Bandelt H.-J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37-48. DOI 10.1093/oxfordjournals.molbev.a026036.

3. Belik V.P., Guguyeva E.V., Vetrov V.V., Milobog Y.V. The Demoiselle crane in the northwestern Caspian lowland: distribution, number, and breeding success. Cranes of Eurasia (Biology, Distribution, Migrations, Management). 2011;4:157-174.

4. Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2011;4(2):359-361. DOI 10.1007/s12686-011-9548-7.

5. Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147: 915-925.

6. Haase M., Ilyashenko V. A glimpse on mitochondrial differentiation among four currently recognized subspecies of the common crane Grus grus. Ardeola. 2012;59(1):131-136.

7. Hasegawa O., Ishibashi Y., Abe S. Isolation and characterization of microsatellite loci in the red-crowned crane Grus japonensis. Mol. Ecol. 2000;9:1677-1678.

8. Hasegawa O., Takada S., Yoshida M.C., Abe S. Variation of mitochondrial control region sequences in three crane species, the red-crowned crane Grus japonensis, the common crane G. grus and the hooded crane G. monacha. Zool. Sci. 1999;16:685-692.

9. Hudson R.R., Slatkin M., Maddison W.P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132(2):583-589.

10. Ilyashenko E.I. Changes in Demoiselle crane status over the last 20 years. Proc. of the VIIIth Europ. Crane Conf. Gallocanta, Spain, 10–14 Nov. 2014. Association Amigos de Gallocanta, 2016a;80-88.

11. Ilyashenko E.I. Estimated numbers of cranes (Gruiformes, Gruidae) in Northern Eurasia at the beginning of the twenty-first century. Biol. Bull. 2016b;43(9):1048-1051. DOI 10.1134/S1062359016090119.

12. Jakobsson M., Rosenberg N.A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;2(14): 1801-1806. DOI 10.1093/bioinformatics/btm233.

13. Jones K.L., Barzen J., Ashley M.V. Geographic partitioning of microsatellite variation in the sarus crane. Anim. Conserv. 2005;8:1-8. DOI 10.1017/S1367943004001842.

14. Jones K.L., Henkel J.R., Howard J.J., Lance S.L., Hagen C., Glenn T.C. Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered Whooping crane (Grus americana) and their applicability to other crane species. Conserv. Gen. Res. 2010;2(1): 251-254. DOI 10.1007/s12686-010-9196-3.

15. Jones K.L., Rodwell L., McCann K.I., Verdoorn J.H., Ashley M.V. Genetic conservation of South African wattled cranes. Biol. Conserv. 2006;127:98-106. DOI 10.1016/j.biocon.2005.07.016.

16. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. DOI 10.1093/nar/gkf436.

17. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Mentjies P., Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-1649. DOI 10.1093/bioinformatics/bts199.

18. Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):14511452. DOI 10.1093/bioinformatics/btp187.

19. Meares K., Dawson D., Horsburgh G.J., Perri M.R., Burke T., Taylor T.D. Characterisation of 14 blue crane Grus paradisea (Gruidae, AVES) microsatellite loci for use in detecting illegal trade. Conserv. Genet. 2008;9:1363-1367. DOI 10.1007/s10592-007-9490-0.

20. Meine C.D., Archibald G.W. (Eds.) The Cranes: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland, and Cam¬bridge, U.K., 1996.

21. Mudrik E.A., Kashentseva T.A., Redchuk P.S., Politov D.V. Microsatellite variability data confirm low genetic differentiation of Western and Eastern subspecies of Common crane Grus grus L. (Gruidae, Aves). Mol. Biol. 2015;49(2):260-266. DOI 10.1134/S0026893315020090.

22. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537-2539. DOI 10.1093/bioinformatics/bts460.

23. Ponomarev A., Tatarinova T., Bubyakina V., Smagulova F., Kashentseva T., Morozov I. Variation of mitochondrial DNA D-loop sequences in the endangered Siberian crane Grus leucogeranus Pallas. Conserv. Genet. 2004;5:847-851.

24. Porras-Hurtado L., Ruiz Y., Santos C., Phillips C., Carracedo Á., Lareu M.V. An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 2013;4:98. DOI 10.3389/fgene.2013.00098.

25. Pritchard J.K., Matthew S., Peter D. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2000;164(4):1567-1587. DOI 10.3410/f.1015548.197423.

26. Red Data Book of the Russian Federation. Animals. Moscow: Astrel, 2001.

27. Rhymer J.M., Fain M.G., Austin J.E., Johnson D.H., Krajewski C. Mitochondrial phylogeography, subspecific taxonomy, and conservation genetics of sandhill cranes (Grus canadensis; Aves: Gruidae). Conserv. Gen. 2001;2:203-218.

28. Rosenberg N.A. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes. 2003;4(1):137-138. DOI 10.1046/j.1471-8286.2003.00566.x.

29. Sugimoto T., Hasegawa O., Azuma N., Masatomi H., Sato F., Matsumoto F., Masatomi Y., Izumi H., Abe S. Genetic structure of the endangered red-crowned cranes in Hokkaido, Japan and conservation implications. Conserv. Genet. 2015;16:1395-1401. DOI 10.1007/s10592-015-0748-7.

30. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-595.

31. Zhang L., Zhou L., Dai Y. Genetic structure of wintering Hooded Cranes (Grus monacha) based on mitochondrial DNA D-loop sequences. Chinese Birds. 2012;3(2):71-81. DOI 10.5122/cbirds.2012.0012.

32. Zou H.F., Dong H.Y., Kong W.Y., Ma J., Liu J. Characterization of 18 polymorphic microsatellite loci in the red-crowned crane (Grus japonensis), an endangered bird. Anim. Sci. J. 2010;81(4):519-522. DOI 10.1111/j.1740-0929.2010.00779.x.


Просмотров: 170


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)