The Demoiselle crane (Anthropoides virgo) population genetic structure in Russia
https://doi.org/10.18699/VJ18.398
Abstract
The Demoiselle crane (Anthropoides virgo Linneaus, 1758) is a widespread crane species of Eurasia distributed in the steppe and semi-desert zones from southeast Ukraine eastward to Northern China. The Demoiselle crane uses two wintering grounds in Africa and India corresponding to the European and Asian breeding parts of the range subdivided into several spatially separated breeding flocks. The first estimates of the genetic diversity and differentiation have been obtained from five of them: 1) Azov & Black Sea, 2) Caspian, 3) Volga & Ural, 4) South Siberian and 5) Eastern Asian sampled across the total breeding range in Russia using data from 10 microsatellite loci and the 1 003-bp control region of mitochondrial DNA. In total, the Demoiselle crane demonstrates high level of observed (HO = 0.638 ± 0.032) and expected (HE = 0.657 ± 0.023) hete-rozygosity and haplotype diversity (h = 0.960). Genetic differentiation among populations has shown to be weak for both the microsatellite loci (Wright’s FST = 0.052 or AMOVA estimate 0.016) and mtDNA (FST = 0.040). No evidence of significant population structuring of the Demoiselle crane has been found using the STRUCTURE analysis of multilocus microsatellite genotypes and the NETWORK grouping of control region haplotypes. Despite the haplotype diversity was high, the nucleotide diversity of the species was low (0.0033 ± 0.0003). Negative but non-significant Tajima’s and Fu’s tests did not suggest the recent population expansion in the Demoiselle crane evolutionary history which contrasts to other cranes of the Palearctic (the Eurasian crane Grus grus, and the Hooded crane G. monacha). These data indicate more stable conditions for the Demoiselle crane breeding groups in the steppe zone in Pleistocene as compared to boreal and subarctic breeding grounds of other crane species.
About the Authors
E. A. MudrikRussian Federation
Moscow
Е. I. Ilyashenko
Russian Federation
Moscow
О. А. Goroshko
Russian Federation
Nizhny Tsasuchey, Chita
T. A. Kashentseva
Russian Federation
Brykin Bor
М. V. Korepov
Russian Federation
Ulyanovsk
I. A. Sikorskiy
Russian Federation
Feodosia
G. S. Dzhamirzoev
Russian Federation
Nalchik, Makhachkala
V. Yu. Ilyashenko
Russian Federation
Moscow
D. V. Politov
Russian Federation
Moscow
References
1. Hudson R.R., Slatkin M., Maddison W.P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132(2):583-589.
2. Avise J.C. Phylogeography: The history and formation of species. Cambridge: Harvard Univ. Press, 2000.
3. Ilyashenko E.I. Changes in Demoiselle crane status over the last 20 years. Proc. of the VIIIth Europ. Crane Conf. Gallocanta, Spain, 10–14 Nov. 2014. Association Amigos de Gallocanta, 2016a;80-88.
4. Bandelt H.-J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37-48. DOI 10.1093/oxfordjournals.molbev.a026036.
5. Ilyashenko E.I. Estimated numbers of cranes (Gruiformes, Gruidae) in Northern Eurasia at the beginning of the twenty-first century. Biol. Bull. 2016b;43(9):1048-1051. DOI 10.1134/S1062359016090119.
6. Belik V.P., Guguyeva E.V., Vetrov V.V., Milobog Y.V. The Demoiselle crane in the northwestern Caspian lowland: distribution, number, and breeding success. Cranes of Eurasia (Biology, Distribution, Migrations, Management). 2011;4:157-174.
7. Jakobsson M., Rosenberg N.A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;2(14): 1801-1806. DOI 10.1093/bioinformatics/btm233.
8. Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2011;4(2):359-361. DOI 10.1007/s12686-011-9548-7.
9. Jones K.L., Barzen J., Ashley M.V. Geographic partitioning of microsatellite variation in the sarus crane. Anim. Conserv. 2005;8:1-8. DOI 10.1017/S1367943004001842.
10. Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147: 915-925.
11. Jones K.L., Henkel J.R., Howard J.J., Lance S.L., Hagen C., Glenn T.C. Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered Whooping crane (Grus americana) and their applicability to other crane species. Conserv. Gen. Res. 2010;2(1): 251-254. DOI 10.1007/s12686-010-9196-3.
12. Haase M., Ilyashenko V. A glimpse on mitochondrial differentiation among four currently recognized subspecies of the common crane Grus grus. Ardeola. 2012;59(1):131-136.
13. Jones K.L., Rodwell L., McCann K.I., Verdoorn J.H., Ashley M.V. Genetic conservation of South African wattled cranes. Biol. Conserv. 2006;127:98-106. DOI 10.1016/j.biocon.2005.07.016.
14. Hasegawa O., Ishibashi Y., Abe S. Isolation and characterization of microsatellite loci in the red-crowned crane Grus japonensis. Mol. Ecol. 2000;9:1677-1678.
15. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. DOI 10.1093/nar/gkf436.
16. Hasegawa O., Takada S., Yoshida M.C., Abe S. Variation of mitochondrial control region sequences in three crane species, the red-crowned crane Grus japonensis, the common crane G. grus and the hooded crane G. monacha. Zool. Sci. 1999;16:685-692.
17. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Mentjies P., Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-1649. DOI 10.1093/bioinformatics/bts199.
18. Hudson R.R., Slatkin M., Maddison W.P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132(2):583-589.
19. Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):14511452. DOI 10.1093/bioinformatics/btp187.
20. Ilyashenko E.I. Changes in Demoiselle crane status over the last 20 years. Proc. of the VIIIth Europ. Crane Conf. Gallocanta, Spain, 10–14 Nov. 2014. Association Amigos de Gallocanta, 2016a;80-88.
21. Meares K., Dawson D., Horsburgh G.J., Perri M.R., Burke T., Taylor T.D. Characterisation of 14 blue crane Grus paradisea (Gruidae, AVES) microsatellite loci for use in detecting illegal trade. Conserv. Genet. 2008;9:1363-1367. DOI 10.1007/s10592-007-9490-0.
22. Ilyashenko E.I. Estimated numbers of cranes (Gruiformes, Gruidae) in Northern Eurasia at the beginning of the twenty-first century. Biol. Bull. 2016b;43(9):1048-1051. DOI 10.1134/S1062359016090119.
23. Meine C.D., Archibald G.W. (Eds.) The Cranes: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland, and Cambridge, U.K., 1996.
24. Jakobsson M., Rosenberg N.A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;2(14): 1801-1806. DOI 10.1093/bioinformatics/btm233.
25. Mudrik E.A., Kashentseva T.A., Redchuk P.S., Politov D.V. Microsatellite variability data confirm low genetic differentiation of Western and Eastern subspecies of Common crane Grus grus L. (Gruidae, Aves). Mol. Biol. 2015;49(2):260-266. DOI 10.1134/S0026893315020090.
26. Jones K.L., Barzen J., Ashley M.V. Geographic partitioning of microsatellite variation in the sarus crane. Anim. Conserv. 2005;8:1-8. DOI 10.1017/S1367943004001842.
27. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537-2539. DOI 10.1093/bioinformatics/bts460.
28. Jones K.L., Henkel J.R., Howard J.J., Lance S.L., Hagen C., Glenn T.C. Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered Whooping crane (Grus americana) and their applicability to other crane species. Conserv. Gen. Res. 2010;2(1): 251-254. DOI 10.1007/s12686-010-9196-3.
29. Ponomarev A., Tatarinova T., Bubyakina V., Smagulova F., Kashentseva T., Morozov I. Variation of mitochondrial DNA D-loop quences in the endangered Siberian crane Grus leucogeranus Pallas. Conserv. Genet. 2004;5:847-851.
30. Jones K.L., Rodwell L., McCann K.I., Verdoorn J.H., Ashley M.V. Genetic conservation of South African wattled cranes. Biol. Conserv. 2006;127:98-106. DOI 10.1016/j.biocon.2005.07.016.
31. Porras-Hurtado L., Ruiz Y., Santos C., Phillips C., Carracedo Á., Lareu M.V. An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 2013;4:98. DOI 10.3389/fgene.2013.00098.
32. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-3066. DOI 10.1093/nar/gkf436.
33. Pritchard J.K., Matthew S., Peter D. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2000;164(4):1567-1587. DOI 10.3410/f.1015548.197423.
34. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Mentjies P., Drummond A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-1649. DOI 10.1093/bioinformatics/bts199.
35. Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):14511452. DOI 10.1093/bioinformatics/btp187.
36. Red Data Book of the Russian Federation. Animals. Moscow: Astrel, 2001.
37. Meares K., Dawson D., Horsburgh G.J., Perri M.R., Burke T., Taylor T.D. Characterisation of 14 blue crane Grus paradisea (Gruidae, AVES) microsatellite loci for use in detecting illegal trade. Conserv. Genet. 2008;9:1363-1367. DOI 10.1007/s10592-007-9490-0.
38. Meine C.D., Archibald G.W. (Eds.) The Cranes: Status Survey and Conservation Action Plan. IUCN, Gland, Switzerland, and Cambridge, U.K., 1996.
39. Rhymer J.M., Fain M.G., Austin J.E., Johnson D.H., Krajewski C. Mi¬tochondrial phylogeography, subspecific taxonomy, and conservation genetics of sandhill cranes (Grus canadensis; Aves: Gruidae). Conserv. Gen. 2001;2:203-218.
40. Mudrik E.A., Kashentseva T.A., Redchuk P.S., Politov D.V. Microsatellite variability data confirm low genetic differentiation of Western and Eastern subspecies of Common crane Grus grus L. (Gruidae, Aves). Mol. Biol. 2015;49(2):260-266. DOI 10.1134/S0026893315020090.
41. Rosenberg N.A. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes. 2003;4(1):137-138. DOI 10.1046/j.1471-8286.2003.00566.x.
42. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537-2539. DOI 10.1093/bioinformatics/bts460.
43. Sugimoto T., Hasegawa O., Azuma N., Masatomi H., Sato F., Matsumoto F., Masatomi Y., Izumi H., Abe S. Genetic structure of the endangered red-crowned cranes in Hokkaido, Japan and conservation implications. Conserv. Genet. 2015;16:1395-1401. DOI 10.1007/s10592-015-0748-7.
44. Ponomarev A., Tatarinova T., Bubyakina V., Smagulova F., Kashentseva T., Morozov I. Variation of mitochondrial DNA D-loop quences in the endangered Siberian crane Grus leucogeranus Pallas. Conserv. Genet. 2004;5:847-851.
45. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-595.
46. Porras-Hurtado L., Ruiz Y., Santos C., Phillips C., Carracedo Á., Lareu M.V. An overview of STRUCTURE: applications, parameter settings, and supporting software. Front. Genet. 2013;4:98. DOI 10.3389/fgene.2013.00098.
47. Zhang L., Zhou L., Dai Y. Genetic structure of wintering Hooded Cranes (Grus monacha) based on mitochondrial DNA D-loop sequences. Chinese Birds. 2012;3(2):71-81. DOI 10.5122/cbirds.2012.0012.
48. Pritchard J.K., Matthew S., Peter D. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2000;164(4):1567-1587. DOI 10.3410/f.1015548.197423.
49. Zou H.F., Dong H.Y., Kong W.Y., Ma J., Liu J. Characterization of 18 polymorphic microsatellite loci in the red-crowned crane (Grus japonensis), an endangered bird. Anim. Sci. J. 2010;81(4):519-522. DOI 10.1111/j.1740-0929.2010.00779.x.
50. Red Data Book of the Russian Federation. Animals. Moscow: Astrel, 2001.
51. Rhymer J.M., Fain M.G., Austin J.E., Johnson D.H., Krajewski C. Mi¬tochondrial phylogeography, subspecific taxonomy, and conservation genetics of sandhill cranes (Grus canadensis; Aves: Gruidae). Conserv. Gen. 2001;2:203-218.
52. Rosenberg N.A. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes. 2003;4(1):137-138. DOI 10.1046/j.1471-8286.2003.00566.x.
53. Sugimoto T., Hasegawa O., Azuma N., Masatomi H., Sato F., Matsumoto F., Masatomi Y., Izumi H., Abe S. Genetic structure of the endangered red-crowned cranes in Hokkaido, Japan and conservation implications. Conserv. Genet. 2015;16:1395-1401. DOI 10.1007/s10592-015-0748-7.
54. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-595.
55. Zhang L., Zhou L., Dai Y. Genetic structure of wintering Hooded Cranes (Grus monacha) based on mitochondrial DNA D-loop sequences. Chinese Birds. 2012;3(2):71-81. DOI 10.5122/cbirds.2012.0012.
56. Zou H.F., Dong H.Y., Kong W.Y., Ma J., Liu J. Characterization of 18 polymorphic microsatellite loci in the red-crowned crane (Grus japonensis), an endangered bird. Anim. Sci. J. 2010;81(4):519-522. DOI 10.1111/j.1740-0929.2010.00779.x.