Alloplasmic recombinant lines (H. vulgare)-T. aestivum with 1RS.1BL translocation: initial genotypes for production of common wheat varieties
https://doi.org/10.18699/VJ18.393
Abstract
Alloplasmic lines are formed when the cytoplasm of one species is replaced by the cytoplasm of another as a result of repeated recurrent crosses of wide hybrids with the paternal genotype. Since the cytoplasm replacement results in new intergenomic interactions between a nucleus and cytoplasm leading to variability of plant characteristics, alloplasmic lines with restored fertility can be an additional source of biodiversity of cultivated plants. Earlier, recombinant alloplasmic lines (H. vulgare)-T. aestivum designated as L-17(1)–L-17(37) were formed from a plant with partially restored fertility of the BC3 generation of barley-wheat hybrid H. vulgare (cv. Nepolegayushchii) × T. aestivum (cv. Saratovskaya 29). This male-sterile hybrid was consistently backcrossed with wheat varieties Mironovskaya 808 (twice) and Saratovskaya 29, and Mironovskaya 808 had a positive impact on the restoration of fertility. This paper presents the results of investigation into a group of recombinant alloplasmic lines (L-17F4), as well as into doubled haploids (DH) lines – alloplasmic DH-17-lines obtained from anther culture of alloplasmic lines (L-17F2). The most productive of these lines were used as initial breeding genotypes. Hybrid form Lutescens 311/00-22 developed from the crossing of the alloplasmic DH(1)-17 line (as maternal genotype) with euplasmic line Com37 (CIMMYT), the source of the 1RS.1BL wheat-rye translocation, proved to be successful for breeding. The presence of the 1RS.1BL translocation in the genome of the Lutescens 311/00-22 form and the L-311(1)–L-311(6) alloplasmic lines isolated from it did not lead to a decrease of fertility or sterility in the plants. This indicates that the chromosome of the 1BS wheat does not carry the gene(s) that determine the restoration of fertility in the studied (H. vulgare)-T. aestivum alloplasmic lines. Alloplasmic lines L-311(1)–L-311(6) showed their advantage in comparison with the standard varieties for resistance to leaf and stem rust, yield, and grain quality. The breeding tests performed at Omsk Agricultural Scientific Center, Agrocomplex “Kurgansemena”, Federal State Unitary Enterprise “Ishimskoe” (Tyumen Region), using alloplasmic lines L-311(5), L-311(4) and L-311(6) resulted in varieties of spring common wheat Sigma, Uralosibirskaya 2 and Ishimskaya 11, respectively.
About the Authors
L. A. PershinaRussian Federation
Novosibirsk
L. I. Belova
Russian Federation
Novosibirsk
N. V. Trubacheeva
Russian Federation
Novosibirsk
T. S. Osadсhaya
Russian Federation
Novosibirsk
V. K. Shumny
Russian Federation
Novosibirsk
I. A. Belan
Russian Federation
Omsk
L. P. Rosseeva
Russian Federation
Omsk
V. V. Nemchenko
Russian Federation
Kurgan
S. N. Abakumov
Russian Federation
Federal State Unitary Enterprise “Ishimskoe”
References
1. Pershina L.A., Numerova O.M., Belova L.I., Devyatkina E.P., Shumny V.K. Restoration of fertility in backcross progeny of barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) in relation to wheat genotypes involved in backcrosses. Russ. J. Genet. 1999a;35(2):176-183.
2. Aksyonova E., Sinyavskaya M., Danilenko N., Pershina L., Nakamura C., Davydenko O. Heteroplasmy and paternally oriented shift of the organellar DNA composition in barley-wheat hybrids during backcrosses with wheat parents. Genome. 2005;48(5):761-769.
3. Pershina L.A., Osadchaya T.S., Badaeva E.D., Belan I.A., Rosseeva L.P. Androgenesis in anther cultures of cultivars and a promising form of spring common wheat of West Siberia differing in the presence or absence of wheat-alien translocations. Russ. J. Genet.: Appl. Res. 2013;3(4): 246253. DOI 10.1134/S2079059713040096.
4. Atienza S.G., Martin A., Peechioni N., Platani C., Cattivelli L. The nuclear-cytoplasmic interaction controls carotenoid content in wheat. Euphytica. 2008;159:325-331.
5. Pershina L.A., Trubacheeva N.V., Sinyavskaya M.G., Devyatkina E.P., Kravtsova L.A. Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloro¬plast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare )-T. aestivum. Russ. J. Genet. 2014;50(10):1017-1024.
6. Belan I., Rosseeva L., Laikova L., Rosseev V., Pershina L., Trubacheeva N., Morgounov A., Zelenskiy Y. Utilization of new wheat genepool in breeding of spring bread wheat. Proc. of 8th Int. Wheat Conf. St. Petersburg, 1–4 June 2010. St. Petersburg, 2010;69-70.
7. Pretorius Z.A., Singh R.P., Wagoire W.W., Payne T.S. Detection of virulence to wheat stem rust resis-tance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 2000;84(2):203. DOI 10.1094/PDIS.2000.84.2.203B.
8. Belan I.A., Rosseeva L.P., Meshkova L.V., Blokhina N.P., Pershina L.A., Trubacheeva N.V. Development of soft wheat varieties resistant to fungal diseases for West Siberia and the Ural. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of the Altai State Agricultural University. 2017;1(147):5-7. (in Russian)
9. Rabinovich S.V. Importance of wheat–rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100:323-340.
10. Bentolila S., Alfonso A.A., Hanson M.R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male sterile plants. Proc. Natl. Acad. Sci. USA. 2002;99:10887-10892.
11. Schlegel R. Current List of Wheats with Rye and Alien Intro¬gression. Version 05.16. 2018. Available at: http://www.rye-gene-map.de/rye-introgression
12. Bildanova L.L., Badaeva E.D., Pershina L.A., Salina E.A. Molecular study and C-banding of chromosomes in common wheat alloplasmic lines obtained from the backcross progeny of barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) and differing in fer¬tility. Russ. J. Genet. 2004;40(12):1383-1391.
13. Semenov O.G., Divashuk M.G., Haitembu Gerhard Shangeshapwako, Mohammed Tawfeek Ahmed Kaid. DNA marker-assisted creation of allocytoplasmic wheat geno¬types with high gluten quality. Vestnik RUDN = Bulletin of Peoples’ Friendship University of Russia. 2016;1:7-14. (in Russian)
14. Buloychik A.A., Voluevich E.A., Mikhno A.M. Genome and plasmon effects on the expression of defeated genes for resistance to brown rust in wheat. Tsitologiya i Genetika = Cytology and Genetics. 2002;36(2):11-19. (in Russian)
15. Semenov O.G., Mohammed Tawfeek Ahmed Kaid. Mor¬phobiological characterization of genotypes of allocyto¬plasmic spring wheat forms according to their level of tolerance to drought stress. Vestnik RUDN = Bulletin of Peoples’ Friendship University of Russia. 2014;2:5-14. (in Russian)
16. Cisar G., Cooper D.B. Hybrid wheat. In: Curtis B.C., Rajaram S. Gomez Macpherson H. (Eds). Bread Wheat: Improvement and Production. Rome: Food and Agriculture Organization, 2002;30:157-174.
17. Singh N.K., Shepherd K.W., McIntosh R.A. Linkage mapping of genes for resistance to leaf, steam and stripe rust and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet. 1990;80(5):609-616. DOI 10.1007/BF00224219.
18. Crosatti C., Quansah L., Maré C., Giusti L., Roncaglia E., Atienza S.G., Cattivelli L., Fait A. Cytoplasmic genome substitution in wheat affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite altera¬tions. BMC Genomics. 2013;14:868-889. https://doi.org/10.1186/1471-2164-14-868.
19. Soltani A., Kumar A., Mergoum M., Pirseyedi S.M., Hegstad J.B., Mazaheri M., Kianian S.F. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants. Funct. Integr. Genomics. 2016;16(2):171182. DOI 10.1007/s10142-016-0475-2.
20. Delibes A., Doussinault G., Mena M., López-Brana I., Garcia-Olmedo F. Eyespot resistance gene Pch-1 from Aegilops ventricosa is associated with a different chromosome in wheat line H-93-70 than the resistance factor in “Roazon” wheat. Theor. Appl. Genet. 1988; 76(4):573-576. DOI 10.1007/BF00260911.
21. Suzuki T., Nakamura C., Mori N., Kaneda C. Overexpres¬sion of mitochondrial genes in alloplasmic common wheat with a cytoplasm of wheatgrass (Agropyron trichopho¬rum) showing depressed vigor and male sterility. Plant Mol. Biol. 1995;27(3):553-565.
22. Dhitaphichit P., Jones P., Keane E.M. Nuclear and cytoplasmic gene control of resistance to loose smut (Ustilago trit¬ici (Pers.) Rostr.) in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1989;78(6): 897-903.
23. Tahmasebi S., Heidari B., Pakniyat H., Dadkhodaie A. Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res. Commun. 2015;43(4):554-566.
24. Dorofeev V.F., Udachin R.A., Semenova L.V., Novikova M.V., Gradchaninova O.D., Shitova I.P., Merezhko A.F., Filatenko A.A. Wheats of the World. Leningrad: Agropromizdat Publ., 1987. (in Russian)
25. Talukder S.K., Vara Prasad P.V., Todd T., Babar M.A., Poland J., Bowden R., Fritz A. Effect of cytoplasmic diversity on post anthesis heat tolerance in wheat. Euphytica. 2015;204:383-394. DOI 10.1007/s10681-014-1350-7.
26. Ekiz H., Safi Kiral A., Akçin A., Simsek L. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.). Euphytica. 1998;100(1):189-196.
27. Tsunewaki K. Plasmon analysis as the counterpart of genome analysis. In: Jauhar P.P. (Ed.). Methods of Genome Analysis in Plants. Boca Raton: CRC Press, 1996;271-299.
28. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization on wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91(1):59-87.
29. Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rf multi, of wheat for three Aegilops plasmons, using 1BS 1RS recombinant lines. Theor. Appl. Genet. 2015;128:723-732. DOI 10.1007/s00122-015-2467-3.
30. Gordey I.A., Belko N.B., Lyusikov O.M. Sekalotritikum (×Secalotriticum): the genetic basis for the creation and formation of the genome. Minsk: Belaruskaya Navuka Publ., 2011. (in Russian)
31. Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rf multi, of wheat for three Aegilops plasmons, using 1BS 1RS recombinant lines. Theor. Appl. Genet. 2015;128:723-732. DOI 10.1007/s00122-015-2467-3.
32. Gultyaeva E.I. Rye translocations in cultivars of common wheat included in National Register of Breeding Achievements. Proc. of 3d Int. Conf. “Genetic Resources and Plant Breeding”. Novosibirsk, 2017;16-17. (in Russian)
33. Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1R. Cereal Res. Commun. 2008;36(2):269-278.
34. Jones P., Keane E.M., Osborne B.A. Effects of alien cytoplasmic variation on carbon assimilation and productivity in wheat. J. Exp. Bot. 1998;49(326):1519-1528.
35. Keane E.M., Jones P.W. Effects of alien cytoplasm substitution on the response of wheat cultivars to Septoria nodorum. Ann. Appl. Biol. 1990;117:299-317.
36. Klimushina M.V., Divashuk M.G., Karlov G.I., Mokhammed T.A.K., Semenov O.G. Analysis of allelic state of genes responsible for baking properties in allocytoplasmic wheat hybrids. Russ. J. Genet. 2013;49(5):530-538. DOI 10.1134/S1022795413050074.
37. Liu C.G., Wu Y.W., Hou H., Zhang C., Zhang Y., McIntosh R.A. Value and utilization of alloplasmic com-mon wheats with Aegilops crassa cytoplasm. Plant Breed. 2002;121(5):407-410. DOI 10.1046/j.14390523.2002.755374.x.
38. Liu Y., Tang L., Xu Q., Ma D., Zhao M., Sun J., Chen W. Experimental and genomic evidence for the indica-type cytoplasmic effect in Oryza sativa L. ssp. japonica. J. In¬tegr. Agric. 2016;15(10):2183-2191. DOI 10.1016/S20953119(15)61190-X.
39. Mago R., Spielmeyer W., Lawrence G. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor. Appl. Genet. 2002;104(8):13171324. DOI 10.1007/s00122-002-0879-3.
40. Mukai Y., Gill B.S. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome. 1991;34(3):448-452. DOI 10.1139/g91-067.
41. Pershina L.A., Belova L.I., Devyatkina E.P., Numerova O.M., Shumny V.K. Efficiency of haploid plant raise by anther culturing and remote crossing of cereals. Fiziologiya i Biokhimiya Kulturnykh Rasteniy = Physiology and Biochemistry of Cultivated Plants. 1999b;31(3):196-202. (in Russian)
42. Pershina L.A., Numerova O.M., Belova L.I., Devyatkina E.P., Shumny V.K. The effect of the genotypic diversity of Hordeum vulgare L. and Triticum aestivum L. on the crossability and production of partially fertile barley-wheat hybrids. Russ. J. Genet. 1998;34(10):1156-1163.
43. Pershina L.A., Numerova O.M., Belova L.I., Devyatkina E.P., Shumny V.K. Restoration of fertility in backcross progeny of barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) in relation to wheat genotypes involved in backcrosses. Russ. J. Genet. 1999a;35(2):176-183.
44. Pershina L.A., Osadchaya T.S., Badaeva E.D., Belan I.A., Rosseeva L.P. Androgenesis in anther cultures of cultivars and a promising form of spring common wheat of West Siberia differing in the presence or absence of wheat-alien translocations. Russ. J. Genet.: Appl. Res. 2013;3(4): 246253. DOI 10.1134/S2079059713040096.
45. Pershina L.A., Trubacheeva N.V., Sinyavskaya M.G., Devyatkina E.P., Kravtsova L.A. Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloro¬plast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare )-T. aestivum. Russ. J. Genet. 2014;50(10):1017-1024.
46. Pretorius Z.A., Singh R.P., Wagoire W.W., Payne T.S. Detection of virulence to wheat stem rust resis-tance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 2000;84(2):203. DOI 10.1094/PDIS.2000.84.2.203B.
47. Rabinovich S.V. Importance of wheat–rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100:323-340.
48. Schlegel R. Current List of Wheats with Rye and Alien Intro¬gression. Version 05.16. 2018. Available at: http://www.rye-gene-map.de/rye-introgression
49. Semenov O.G., Divashuk M.G., Haitembu Gerhard Shangeshapwako, Mohammed Tawfeek Ahmed Kaid. DNA marker-assisted creation of allocytoplasmic wheat geno¬types with high gluten quality. Vestnik RUDN = Bulletin of Peoples’ Friendship University of Russia. 2016;1:7-14. (in Russian)
50. Semenov O.G., Mohammed Tawfeek Ahmed Kaid. Mor¬phobiological characterization of genotypes of allocyto¬plasmic spring wheat forms according to their level of tolerance to drought stress. Vestnik RUDN = Bulletin of Peoples’ Friendship University of Russia. 2014;2:5-14. (in Russian)
51. Singh N.K., Shepherd K.W., McIntosh R.A. Linkage mapping of genes for resistance to leaf, steam and stripe rust and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet. 1990;80(5):609-616. DOI 10.1007/BF00224219.
52. Soltani A., Kumar A., Mergoum M., Pirseyedi S.M., Hegstad J.B., Mazaheri M., Kianian S.F. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants. Funct. Integr. Genomics. 2016;16(2):171182. DOI 10.1007/s10142-016-0475-2.
53. Suzuki T., Nakamura C., Mori N., Kaneda C. Overexpres¬sion of mitochondrial genes in alloplasmic common wheat with a cytoplasm of wheatgrass (Agropyron trichopho¬rum) showing depressed vigor and male sterility. Plant Mol. Biol. 1995;27(3):553-565.
54. Tahmasebi S., Heidari B., Pakniyat H., Dadkhodaie A. Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res. Commun. 2015;43(4):554-566.
55. Talukder S.K., Vara Prasad P.V., Todd T., Babar M.A., Poland J., Bowden R., Fritz A. Effect of cytoplasmic diversity on post anthesis heat tolerance in wheat. Euphytica. 2015;204:383-394. DOI 10.1007/s10681-014-1350-7.
56. Tsunewaki K. Plasmon analysis as the counterpart of genome analysis. In: Jauhar P.P. (Ed.). Methods of Genome Analysis in Plants. Boca Raton: CRC Press, 1996;271-299.
57. Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rf multi, of wheat for three Aegilops plasmons, using 1BS 1RS recombinant lines. Theor. Appl. Genet. 2015;128:723-732. DOI 10.1007/s00122-015-2467-3.
58. Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rf multi, of wheat for three Aegilops plasmons, using 1BS 1RS recombinant lines. Theor. Appl. Genet. 2015;128:723-732. DOI 10.1007/s00122-015-2467-3.