Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Expression of palmitoyl transferases in brain structures of mice genetically predisposed to depressive-like behavior

https://doi.org/10.18699/VJ18.399

Abstract

Most G-coupled receptors undergo posttranslational modifications. Among these modifications is S-palmitoylation, carried out by specialized enzymes palmitoyl transferases. Palmitoylation is the covalent attachment of a long-chain fatty acid, palmitate, to cysteine residues. It can influence receptor stability, transportation, and function. Obviously, malfunction of G-protein coupled receptors can cause various psychic disor­ders, including depression. However, no association between palmitoyl transferases and depressive-like behavior has been found hitherto. There is no informa­tion on brain structure specific features of palmitoyl transferase expression either. Here we investigate the expression of ZDHHC5, ZDHHC9, and ZDHHC21 palmi­toyl transferases in brain structures of ASC mice with genetic predisposition to depressive-like behavior in comparison with “nondepressive” CBA mice. Several brain region-specific features were detected in the immunodetection of palmitoyl transferase proteins. Western blot of the ZDHHC5 protein in the midbrain revealed two bands at 75 kDa and 55 kDa. Immuno­detection of ZDHHC21 palmitoyl transferase revealed two bands. One of them was visualized at 27 kDa in the frontal cortex and midbrain. The other, at 32 kDa in the hippocampus. Probing for ZDHHC9 also showed two bands in each of the midbrain and hippocampus, at 46 and 41 kDa. However, the expression of all investigated palmitoyl transferases in ASC mice with depressive-like behavior was almost identical to those in CBA mice. Thus, it was the first detection of brain region-specific features of the expression of investigated palmitoyl transferases. However, the study demonstrates that the genetic predisposition to depression-like behavior in ASC mice is not associated with changes in ZDHHC5, ZDHHC9, or ZDHHC21 palmitoyl transferase expression.

About the Authors

E. M. Kondaurova
Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


T. V. Ilchibaeva
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


A. S. Tsybko
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


Е. G. Ponimaskin
Institute of Cellular Neurophysiology, Hannover Medical High School
Germany
Hannover


V. S. Naumenko
Institute of Cytology and Genetics, SB RAS
Russian Federation
Novosibirsk


References

1. Fukata Y., Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 2010;11(3):161-175. DOI 10.1038/nrn2788.

2. Alperina E.L., Kulikov A.V., Popova N.K., Idova G.V. Immnune response in mice of a new strain ASC (antidepressant-sensitive catalepsy). Byulleten Eksperimentalnoy Biologii i Meditsiny = Bulletin of Experimental Biology and Medicine. 2007; 144(8):188-190. (in Russian)

3. Badawy S.M.M., Okada T., Kajimoto T., Ijuin T., Nakamura S.I. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci. Rep. 2017;7(1):16552. DOI 10.1038/s41598-017-16457-4.

4. Gorinski N., Ponimaskin E. Palmitoylation of serotonin receptors. Biochem. Soc. Trans. 2013;41(1):89-94. DOI 10.1042/BST20120235.

5. Bazovkina D.V., Kulikov A.V., Kondaurova E.M., Popova N.K. Selection for the predisposition to catalepsy enhances depressive-like traits in mice. Genetika = Genetics (Moscow). 2005; 41(9):12221228. (in Russian)

6. Harro J., Oreland L. Depression as a spreading neuronal adjustment disorder. Eur. Neuropsychopharmacol. 1996;6(3):207-223.

7. Beard R.S.Jr., Yang X., Meegan J.E., Overstreet J.W., Yang C.G., El¬liott J.A., Reynolds J.J., Cha B.J., Pivetti C.D., Mitchell D.A., Wu M.H., Deschenes R.J., Yuan S.Y. Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome. Nat. Commun. 2016;7(12823). DOI 10.1038/ncomms12823.

8. Jacobs B.L., Azmitia E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992;72(1):165-229.

9. Brigidi G.S., Santyr B., Shimell J., Jovellar B., Bamji S.X. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat. Commun. 2015;6(8200). DOI 10.1038/ncomms9200.

10. Katkova L.E., Solenov E.I., Ivanova L.N. The role of protein kinase C in the formation of the mechanism of vasopressin antidiuretic action in the rat kidney during mammalian postnatal development. Ontogenez = Ontogenesis (Moscow). 2009;40(6):442-448. (in Russian)

11. Cho E., Park M. Palmitoylation in Alzheimer’s disease and other neu¬rodegenerative diseases. Pharmacol. Res. 2016;111(133-151). DOI 10.1016/j.phrs.2016.06.008.

12. Kondaurova E.M., Bazovkina D.V., Kulikov A.V., Popova N.K. Selective breeding for catalepsy changes the distribution of microsatellite D13Mit76 alleles linked to the 5-HT serotonin receptor gene in mice. Genes Brain Behav. 2006;5(8):596-601. DOI GBB212.

13. Duman R.S., Heninger G.R., Nestler E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry. 1997;54(7):597-606.

14. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Meth. 2005;141(1):97-101. DOI S016502700400216X.

15. Dutta D., Mandal C., Mandal C. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. Biochim. Biophys. Acta. 2017;1861(12):3096-3108. DOI 10.1016/j.bbagen.2017.08.025.

16. Li Y., Hu J., Hofer K., Wong A.M., Cooper J.D., Birnbaum S.G., Hammer R.E., Hofmann S.L. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J. Biol. Chem. 2010;285(17):13022-13031. DOI 10.1074/jbc.M109.079426.

17. Fukata Y., Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 2010;11(3):161-175. DOI 10.1038/nrn2788.

18. Maes M., Meltzer H.Y. The serotonin hypothesis of major depression. Psychopharmacology: The Fourth Generation of Progress. Eds. E.E. Bloom, N.N. Kupfer. New York, 1995;933-944.

19. Gorinski N., Ponimaskin E. Palmitoylation of serotonin receptors. Biochem. Soc. Trans. 2013;41(1):89-94. DOI 10.1042/BST20120235.

20. Naumenko V.S., Kondaurova E.M., Bazovkina D.V., Tsybko A.S., Tikhonova M.A., Kulikov A.V., Popova N.K. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience. 2012;214:59-67. DOI S0306-4522(12)00390-9.

21. Harro J., Oreland L. Depression as a spreading neuronal adjustment disorder. Eur. Neuropsychopharmacol. 1996;6(3):207-223.

22. Naumenko V.S., Kulikov A.V. Quantitative assay of 5-HT1A receptor gene expression in the brain. Molekulyarnaya Biologiya = Molecu¬lar Biology (Moscow). 2006;40(1):37-44. (in Russian)

23. Jacobs B.L., Azmitia E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992;72(1):165-229.

24. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Meth. 2008;170(2):197-203. DOI S0165-0270(08)00044-7.

25. Katkova L.E., Solenov E.I., Ivanova L.N. The role of protein kinase C in the formation of the mechanism of vasopressin antidiuretic action in the rat kidney during mammalian postnatal development. Ontogenez = Ontogenesis (Moscow). 2009;40(6):442-448. (in Russian)

26. Neumeister A., Wood S., Bonne O., Nugent A.C., Luckenbaugh D.A., Young T., Bain E.E., Charney D.S., Drevets W.C. Reduced hippocampal volume in unmedicated, remitted patients with major depres-sion versus control subjects. Biol. Psychiatry. 2005;57(8):935-937. DOI 10.1016/j.biopsych.2005.01.016.

27. Kondaurova E.M., Bazovkina D.V., Kulikov A.V., Popova N.K. Selective breeding for catalepsy changes the distribution of microsatellite D13Mit76 alleles linked to the 5-HT serotonin receptor gene in mice. Genes Brain Behav. 2006;5(8):596-601. DOI GBB212.

28. Papoucheva E., Dumuis A., Sebben M., Richter D.W., Ponimaskin E.G. The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi pro-tein. J. Biol. Chem. 2004;279(5):3280-3291. DOI 10.1074/jbc.M308177200.

29. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Meth. 2005;141(1):97-101. DOI S016502700400216X.

30. Renner U., Glebov K., Lang T., Papusheva E., Balakrishnan S., Keller B., Richter D.W., Jahn R., Ponimaskin E. Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol. Pharmacol. 2007;72(3):502-513. DOI 10.1124/mol.107.037085.

31. Li Y., Hu J., Hofer K., Wong A.M., Cooper J.D., Birnbaum S.G., Hammer R.E., Hofmann S.L. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J. Biol. Chem. 2010;285(17):13022-13031. DOI 10.1074/jbc.M109.079426.

32. Ressler K.J., Mayberg H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 2007;10(9):1116-1124. DOI 10.1038/nn1944.

33. Maes M., Meltzer H.Y. The serotonin hypothesis of major depression. Psychopharmacology: The Fourth Generation of Progress. Eds. E.E. Bloom, N.N. Kupfer. New York, 1995;933-944.

34. Varki A. Biological roles of oligosaccharides: all of the theories are correct4. Glycobiology. 1993;3(2):97-130.

35. Naumenko V.S., Kondaurova E.M., Bazovkina D.V., Tsybko A.S., Tikhonova M.A., Kulikov A.V., Popova N.K. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience. 2012;214:59-67. DOI S0306-4522(12)00390-9.

36. Naumenko V.S., Kulikov A.V. Quantitative assay of 5-HT1A receptor gene expression in the brain. Molekulyarnaya Biologiya = Molecu¬lar Biology (Moscow). 2006;40(1):37-44. (in Russian)

37. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Meth. 2008;170(2):197-203. DOI S0165-0270(08)00044-7.

38. Neumeister A., Wood S., Bonne O., Nugent A.C., Luckenbaugh D.A., Young T., Bain E.E., Charney D.S., Drevets W.C. Reduced hippocampal volume in unmedicated, remitted patients with major depres-sion versus control subjects. Biol. Psychiatry. 2005;57(8):935-937. DOI 10.1016/j.biopsych.2005.01.016.

39. Papoucheva E., Dumuis A., Sebben M., Richter D.W., Ponimaskin E.G. The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi pro-tein. J. Biol. Chem. 2004;279(5):3280-3291. DOI 10.1074/jbc.M308177200.

40. Renner U., Glebov K., Lang T., Papusheva E., Balakrishnan S., Keller B., Richter D.W., Jahn R., Ponimaskin E. Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol. Pharmacol. 2007;72(3):502-513. DOI 10.1124/mol.107.037085.

41. Ressler K.J., Mayberg H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 2007;10(9):1116-1124. DOI 10.1038/nn1944.

42. Varki A. Biological roles of oligosaccharides: all of the theories are correct4. Glycobiology. 1993;3(2):97-130.


Review

Views: 752


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)