Влияние однократного введения стрептозотоцина на метаболиты гиппокампа мышей линии NODSCID
https://doi.org/10.18699/VJ18.400
Аннотация
Значимое увеличение за последние годы числа людей с установленным диагнозом «сахарный диабет» выводит исследования, посвященные этой проблеме, в число наиболее актуальных. Продолжительная гипергликемия, сопровождающая развитие и тече-ние сахарного диабета 1-го типа (СД1), может отразиться на функциональном и структурном уровне организации работы головного мозга. В основе подобных реакций может лежать изменение метаболизма. Общепринятым методом прижизненного выявления метаболических реакций в организме служит магнитно-резонансная спектроскопия (МРС). В настоящей работе для оценки влияния стрептозотоцина (СТЗ) и хронической гипергликемии, обусловленной отсроченным эффектом СТЗ, реализованным через гибель β-клеток поджелудочной железы, проведена МРС гиппокампа мышей линии NOD.CB17-Prkdcscid/NcrCrl (NODSCID) через 4 и 60 дней после введения СТЗ. Модель СД1 с введением СТЗ – самая распространенная в мировой практике. Вместе с тем остается открытым вопрос – существует ли краткосрочный эффект введения СТЗ на уровень детектируемых с помощью МРС метаболитов гиппокампа животных. В результате сравнения опытной группы животных с контролем выявлено отсутствие влияния СТЗ на метаболиты гиппокампа мышей NODSCID на 4-й день после его введения. Однако в другом сравнении животных опыта и контроля через 60 дней после введения СТЗ отмечаются увеличение содержания аланина и таурина и снижение содержания лактата. Таким образом, введение самого СТЗ не сказывается на метаболизме гиппокампа. Использование МРС является перспективным методом для оценки влияния СД1 на метаболизм головного мозга животных.
Об авторах
Д. А. ТурРоссия
Новосибирск
О. Б. Шевелев
Россия
Новосибирск
M. Б. Шарапова
Россия
Новосибирск
М. А. Золотых
Россия
Новосибирск
А. Е. Акулов
Россия
Новосибирск
Список литературы
1. Biessels G.J., Braun K.P., de Graaf R.A., van Eijsden P., Gispen W.H., Nicolay K. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study. Diabetologia. 2001; 44:346-353. DOI 10.1007/s001250051625.
2. Duarte J.M., Carvalho R.A., Cunha R.A., Gruetter R. Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J. Neurochem. 2009;111: 368-379. DOI 10.1111/j.1471-4159.2009.06349.x.
3. Dufrane D., van Steenberghe M., Guiot Y., Goebbels R.M., Saliez A., Gianello P. Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation. 2006;15;81(1):36-45. DOI 10.1097/01.tp.0000189712.74495.82.
4. Elsner M., Guldbakke B., Tiedge M., Munday R., Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000;43:1528-1533. DOI 10.1007/s001250051564.
5. Geissler A., Frund R., Scholmerich J., Feuerbach S., Zietz B. Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy. Exp. Clin. Endocrinol. Diabetes. 2003;111(7):421-427. DOI 10.1055/s-2003-44289.
6. Gruetter R. Automatic, localized in vivo adjustment of all first-and second-order shim coils. Magn. Reson. Med. 1993;29:804-811. DOI 10.1002/mrm.1910290613.
7. Gurley S.B., Clare S.E., Snow K.P., Hu A., Meyer T.W., Coffman T.M. Impact of genetic background on nephropathy in diabetic mice. Am. J. Physiol. 2006;290(1):F214-F222. DOI 10.1152/ajprenal.00204. 2005.
8. Heikkila O., Lundbom N., Timonen M., Groop P.H., Heikkinen S., Makimattila S. Hyperglycaemia is associated with changes in the regional concentrations of glucose and myo-inositol within the brain. Diabetologia. 2009;52:534-540. DOI 10.1007/s00125-0081242-2.
9. Huber J.D., VanGilder R.L., Houser K.A. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am. J. Physiol. Heart Circ. Physiol. 2006;291(6):H2660-H2668. DOI 10.1152/ajpheart.00489.2006.
10. Hussy N., Deleuze C., Desarménien M.G., Moos F.C. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog. Neurobiol. 2000; 62(2):113-134. DOI 10.1016/S0301-0082(99)00071-4.
11. Ito T., Schaffer S.W., Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012;42(5): 1529-1539. DOI 10.1007/s00726-011-0883-5.
12. Jederstrom G., Grasjo J., Nordin A., Sjoholm I., Andersson A. Blood glucose-lowering activity of a hyaluronan-insulin complex after oral administration to rats with diabetes. Diabetes Technol. Ther. 2005; 7(6):948-957. DOI 10.1089/dia.2005.7.948.
13. King A.J. The use of animal models in diabetes research. Br. J. Pharmacol. 2012;166(3):877-894. DOI 10.1111/j.1476-5381.2012.01911.x.
14. Kreis R., Ross B.D. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology. 1992;184(1):123-130. DOI 10.1148/radiology.184.1.1319074.
15. Lapidot A., Haber S. Effect of endogenous beta-hydroxybutyrate on glucose metabolism in the diabetic rabbit brain: A C-13-magnetic resonance spectroscopy study of [U-C-13] glucose metabolite. J. Neurosci. Res. 2001;64(2):207-216. DOI 10.1002/jnr.1067.
16. Lenzen S. The mechanisms of alloxanand streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226. DOI 10.1007/s00125007-0886-7.
17. Lenzen S., Tiedge M., Panten U. Glucokinase in pancreatic B-cells and its inhibition by alloxan. Acta Endocrinol. 1987;115:21-29.
18. Lien Y.H., Shapiro J.I., Chan L. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 1990;85(5):1427-1435. DOI 10.1172/ JCI114587.
19. Lien Y.H., Shapiro J.I., Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J. Clin. Invest. 1991;88(1):303-309. DOI 10.1172/JCI115292.
20. Mangia S., Kumar A.F., Moheet A.A., Roberts R.J., Eberly L.E., Seaquist E.R., Tkáč I. Neurochemical profile of patients with type 1 diabetes measured by 1H-MRS at 4T. J. Cereb. Blood Flow Metab. 2013;33:754-759. DOI 10.1038/jcbfm.2013.13.
21. Moshkin M.P., Akulov A.E., Petrovski D.V., Saik O.V., Petrovskiy E.D., Savelov A.A., Koptyug I.V. Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-D-glucose and lipopolysaccharides. NMR Biomed. 2014;27:399-405. DOI 10.1002/nbm.3074.
22. Northam E.A., Rankins D., Lin A., Wellard R.M., Pell G.S., Finch S.J., Werther G.A., Cameron F.J. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32:445-450. DOI 10.2337/dc08-1657.
23. Obrosova I.G., Fathallah L., Stevens M.J. Taurine counteracts oxidative stress and nerve growth factor deficit in early experimental diabetic neuropathy. Exp. Neurol. 2001;172(1):211-219. DOI 10.1006/exnr.2001.7789.
24. Provencher S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993;30(6):672679. DOI 10.1002/mrm.1910300604.
25. Qinna N.A., Badwan A.A. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Des. Devel. Ther. 2015;9:2515-2525. DOI 10.2147/DDDT.S79885.
26. Revsin Y., Rekers N.V., Louwe M.C., Saravia F.E., De Nicola A.F., de Kloet E.R., Oitzl M.S. Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice. Neuropsychopharmacology. 2009;34(3):747-758. DOI 10.1038/npp.2008.136.
27. Rose S.J., Bushi M., Nagra I., Davies W.E. Taurine fluxes in insulin dependent diabetes mellitus and rehydration in streptozotocin treated rats. Adv. Exp. Med. Biol. 2000;483:497-501. DOI 10.1007/0-30646838-755.
28. Salceda R., Vilchis C., Coffe V., Hernandez-Munoz R. Changes in the redox state in the retina and brain during the onset of diabetes in rats. Neurochem. Res. 1998;23(6):893-897. DOI 10.1023/A:1022467230259.
29. Sandler S., Swenne I. Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia. 1983; 25(5):444-447.
30. Sarac K., Akinci A., Alkan A., Aslan M., Baysal T., Ozcan C. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus. Neuroradiology. 2005;47:562-565. DOI 10.1007/s00234-005-1387-3.
31. Schmidt R.E., Dorsey D.A., Beaudet L.N., Frederick K.E., Parvin C.A., Plurad S.B., Levisetti M.G. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy a new experimental model of diabetic autonomic neuropathy. Am. J. Pathol. 2003;163(5):20772091. DOI 10.1016/S0002-9440(10)63565-1.
32. Schnedl W.J., Ferber S., Johnson J.H., Newgard C.B. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 1994;43(11):1326-1333. DOI 10.2337/diab.43.11.1326.
33. Sheshala R., Peh K.K., Darwis Y. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Drug Dev. Ind. Pharm. 2009;35(11): 1364-1374. DOI 10.3109/03639040902939213.
34. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001;50(6):537-546. DOI 10.1097/01.tp.0000189712.74495.82.
35. Tanabe M., Nitta A., Ono H. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory syn¬aptic transmission in the hippocampus. J. Pharmacol. Sci. 2010; 113(4):378-386. DOI 10.1254/jphs.10150FP.
36. Terada T., Hara K., Haranishi Y., Sata T. Antinociceptive effect of intrathecal administration of taurine in rat models of neuropathic pain. Can. J. Anaesth. 2011;58(7):630-637. DOI 10.1007/s12630-0119504-8.
37. Timbrell J.A., Seabra V., Waterfield C.J. The in vivo and in vitro protective properties of taurine. Gen. Pharmacol. 1995;26(3):453-462. DOI 10.1016/0306-3623(94)00203-Y.
38. van Harten B., de Leeuw F.E., Weinstein H.C., Scheltens P., Biessels G.J. Brain imaging in patients with diabetes: a systematic review. Diabetes Care. 2006;29:2539-2548. DOI 10.2337/dc061637.
39. Wang W.T., Lee P., Yeh H.W., Smirnova I.V., Choi I.Y. Effects of acute and chronic hyperglycemia on the neurochemical profiles in the rat brain with streptozotocin-induced diabetes detected using in vivo 1H MR spectroscopy at 9.4T. J. Neurochem. 2012;121:407-417. DOI 10.1111/j.1471-4159.2012.07698.x.
40. Weiss R.B. Streptozocin: a review of its pharmacology, efficacy, and toxicity. Cancer Treat. Rep. 1982;66:427-438.