1. Ashikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol. Biol. 2001;45:31-39. https://doi.org/10.1023/A:1006457321781.
2. Becker C., Hagmann J., Muller J., Koenig D., Stegle O., Borgwardt K., Weigel D. Spontaneous epigenetic variation in the Arabidopsis thali-ana methylome. Nature. 2011;480(7376):245-249. https://doi.org/10.1038/nature10555.
3. Becker C., Weigel D. Epigenetic variation: origin and transgenerational inheritance. Curr. Opin. Plant Biol. 2012;15(5):562-567. https://doi.org/10.1016/j.pbi.2012.08.004.
4. Bruce A.B. The Mendelian theory of heredity and the augmentation of vigor. Science. 1910;32:627-628. https://doi.org/10.1126/science.32.827.627-a.
5. Charlesworth D., Willis J. The genetics of inbreeding depression. Nat. Rev. Genet. 2009;10:783-796. https://doi.org/10.1038/nrg2664.
6. Chodavarapu R.K., Feng S., Ding B., Simon S.A., Lopez D., Jia Y., Wang G.L., Meyers B.C., Jacobsen S.E., Pellegrini M. Transcriptome and methylome interactions in rice hybrids. Proc. Natl. Acad. Sci. USA. 2012;109(30):12040-12045. https://doi.org/10.1073/pnas.1209297109.
7. Crabb A.R. The Hybrid-Corn Makers: Prophets of Plenty. New Brunswick, NJ: Rutgers Univ. Press, 1947.
8. East E.M., Hayes H.K. Heterozygosis in evolution and in plant breeding. U.S. Dept. Agric. Plant Industr. Bull. 1912;243:1879-1938. https://doi.org/10.5962/bhl.title.119161.
9. Greaves I.K., Gonzalez-Bayon R., Wang L., Zhu A., Liu P.-Ch., Grosz -mann M., Peacock W.J., Dennis E.S. Epigenetic changes in hybrids. Plant Physiol. 2015;168(4):1197-1205. https://doi.org/10.1104/pp.15.00231.
10. Groszmann M., Greaves I., Albertyn Z., Scofield G., Peacock W., Dennis E. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA. 2011;108:2617-2622. https://doi.org/10.1073/pnas.1019217108.
11. Gutierrez O.A., Basu S., Saha S., Jenkins J.N., Shoemaker D.B., Cheathman C.L., McCarty J.C. Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci. 2002;42:1841-1847. https://doi.org/10.2135/cropsci2002.1841.
12. He G., He H., Deng X.W. Epigenetic variations in plant hybrids and their potential roles in heterosis. J. Genet. Genomics. 2013;40:205-210. https://doi.org/10.1016/j.jgg.2013.03.011.
13. Jones D. Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acad. Sci. USA. 1917;3(4):310-312. https://doi.org/10.1073/pnas.3.4.310.
14. Kaeppler Sh. Heterosis: Many genes, many mechanisms - end the search for an undiscovered unifying theory. ISRN Botany. 2012;Ar-ticle ID:682824. https://doi.org/10.5402/2012/682824.
15. Kawamura K., Kawanabe T., Shimizua M., Naganoc A.J., Saeki N., Okazaki K., Kaji M., Dennis E.S., Osabe K., Fujimoto R. Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene. 2016;5:1-7. https://doi.org/10.1016/j.plgene.2015.10.003.
16. Kawanabe T., Ishikura S., Miyaji N., Sasaki T., Wu L.M., Itabashi E., Takada S., Shimizu M., Takasaki-Yasuda T., Osabe K., Peacock W.J., Dennis E.S., Fujimoto R. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016:E6704-E6711. https://doi.org/10.1073/pnas.1613372113.
17. Krieger U., Lippman Z.B., Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 2010;42:459-463. https://doi.org/10.1038/ng.550.
18. Lauria M., Piccinini S., Pirona R., Lund G., Viotti A., Motto M. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays). Genetics. 2014;96(3):653-666. https://doi.org/10.1534/genetics.113.160515.
19. Lee S., Nahm H., Kim Y.M., Kim D.D. Characterisation and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 2004;108:619-627. https://doi.org/10.1007/s00122-003-1467-x.
20. Li Q., Li Y., Moose S.P., Hudson M.E. Transposable elements, mRNA expression level and strand-specificity of small RNAs are associated with non-additive inheritance of gene expression in hybrid plants. BMC Plant Biol. 2015;15:168. https://doi.org/10.1186/s12870-015-0549-7.
21. Melchinger A.E. Genetic diversity and heterosis. In: Coors J.G., Stuab J.E. (Eds.). The Genetics and Exploitation of Heterosis and Crop Plants. Crop Sci. Soc. of America, Madison, 1999:99-118.
22. Mimura Y., Inoue T., Minamiyama Y., Kubo N. An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. Breed. Sci. 2012;62(1):93-98. https://doi.org/10.1270/jsbbs.62.93.
23. Minamiyama Y., Tsuro M., Hirai M. An SSR-based linkage map of Capsicum annuum. Mol. Breed. 2006;18(2):157. https://doi.org/10.1007/s11032-006-9024-3.
24. Nei M., Li M.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76(10):5269-5273. https://doi.org/10.1073/pnas.76.10.5269.
25. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 1983; 19:153-170. https://doi.org/10.1007/BF01840887.
26. Ong-Abdullah M., Ordway J.M., Jiang N., ... Alwee S.S., Sambant-hamurthi R., Martienssen R.A. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525(7570):533-537. https://doi.org/10.1038/nature15365.
27. Perenzin M., Corbellini M., Accerbi M., Vaccino P., Borghi B. Bread wheat: Fj hybrid performance and parental diversity estimates using molecular markers. Euphytica. 1998;100:273-279. https://doi.org/10.1023/A:1018324811038.
28. Reif J.C., Hahn V., Melchinger A.E. Genetic bases of heterosis and prediction of hybrid performance. Helia. 2012;35(57):1-8. https://doi.org/10.2298/hel1257001r.
29. Reyna-Lopez G.E., Simpson J., Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 1997;253(6):703-710. https://doi.org/10.1007/s004380050374.
30. Ryder P., McKewon C., Fort A., Spillane Ch. Epigenetics and heterosis in crop plants. In: Epigenetics in Plants of Agronomic Importance: Fundamental and Applications. Springer, Cham, 2014;13-31. https://doi.org/10.1007/978-3-319-07971-4_2.
31. Sanghera G.S., Wani S.H., Hussain W., Shafi W., Haribhushan A., Singh N.B. The magic of heterosis: New tools and complexities. Nat. Sci. 2011;9(11):42-53.
32. Schrag T.A., Mohring J.M., Maurer H.P., Dhillon B.S., Melchinger A.E., Piepho H.-P., S0rensen A.P., Frisch M. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Theor. Appl. Genet. 2009;118:741-751. https://doi.org/10.1007/s00122-008-0934-9.
33. Shen H., He H., Li J., Chen W., Wang X., Guo L., Peng Z., He G., Zhong S., Qi Y., Terzaghi W., Deng X.W. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell. 2012;24(3):875-892. https://doi.org/10.1105/tpc.111.094870.
34. Shpak E.D., Berthiaume C.T., Hill E.J., Torii K.U. Synergistic interaction of three ERECTA-family receptor-like kinases controls Ara-bidopsis organ growth and flower development by promoting cell proliferation. Development. 2004;131(7):1491-1501. https://doi.org/10.1242/dev.01028.
35. Shull G.H. The composition of a field of maize. J. Hered. 1908;4:296-301. https://doi.org/10.1093/jhered/os-4.1.296.
36. Shull G.H. Beginnings of the heterosis concept. In: Gowen J.W. (Ed.). Heterosis. Ames, IA, Iowa State College Press, 1952;14-48.
37. Singh R., Low E.-T., Ooi L., ... Ordway J.M., Sambanthamurthi R., Martienssen R.A. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature. 2013;500:340-344. https://doi.org/10.1038/nature12356.
38. Springer N., Stupar R. Allelic variation and heterosis in maize: How do two halves make more than whole? Genome Res. 2007;17:264-275. https://doi.org/10.1101/gr.5347007.
39. Swanson-Wagner R.A., Jia Y., DeCook R., Borsuk L.A., Nettleton D., Schnable P.S. All possible modes of gene action are observed in a global comparison of gene expression in a maize Fj hybrid and its inbred parents. Proc. Natl. Acad. Sci. USA. 2006;103(18):6805-6810. https://doi.org/10.1073/pnas.0510430103.
40. Tsaftaris A.S., Kafka M., Polidoros A., Tani E. Epigenetic changes in maize DNA and heterosis. In: Abstracts of the Int. Symp. on “The Genetics and Exploitation of Heterosis in Crops”. Mexico City, 1997;112-113.
41. Usatov A.V., Klimenko A.I., Azarin K.V., Gorbachenko O.F., Markin N.V., Tikhobaeva V.E., Kolosov Yu.A., Usatova O.A., Ba-koev S., Makarenko M., Getmantseva L. The relationships between heterosis and genetic distances based on SSR markers in Heliantus annuus. Am. J. Agric. Biol. Sci. 2014;9(3):270-276. https://doi.org/10.3844/ajabssp.2014.270.276.
42. Vergeer P., Wagemaker N., Ouborg N.J. Evidence for an epigenetic role in inbreeding depression. Biol. Lett. 2012;8(5):798-801. https://doi.org/10.1098/rsbl.2012.0494.
43. Xu W., Virmani S.S., Hernandez J.E., Sebastian L.S., Redona E.D., Li Zh. Genetic diversity in the parental lines and heterosis of the tropical rice hybrids. Euphytica. 2002;127:139-148. https://doi.org/10.1023/A:1019960625003.
44. Zhang M., Kimatu J.N., Xu K., Liu B. DNA cytosine methylation in plant development. J. Genet. Genomics. 2010;37:1-12. https://doi.org/10.1016/S1673-8527(09)60020-5.