Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Evaluation of a strategy for tumor-initiating stem cell eradication in primary human glioblastoma cultures as a model

https://doi.org/10.18699/VJ18.31-o

Abstract

Primary cultures of human glioblastoma were obtained from the surgical material of patients K. (female, 61 years, Ds: relapse of glioblastoma) and Zh. (female, 60 years, Ds: relapse of glioblastoma). The effectiveness of a new therapeutic approach aimed at destroying the cancer cell community was evaluated on the primary cell lines of human glioblastoma culture by employing a new strategy of tumor-initiating stem cell synchronization and a domestic strategy of their eradication "3+1". The key elements of the strategy were the following indicator results: (1) evaluation of the presence of tumor-initiating stem cells in a population of cells from analyzed cultures by their ability to internalize double-stranded labeled DNA (TAMRA+ cells); (2) determination of the reference time points of the repair cycle of DNA interstrand cross-links induced by cross-linking cytostatic mitomycin C; (3) evaluation of cell cycle synchronization; (4) determination of the time (day after therapy initiation) when TAMRA+ cells were synchronously present in phase G1/S of the cell cycle, sensitive to the therapy; and (5) establishment of the TAMRA+ (tumor-initiating stem cells) eradication schedule. The cultures were treated with cross-linking cytostatic mitomycin C and a compositional DNA preparation. After the treatments, cell division slows down, and the cultures degrade. The K cell line completely degraded within 30 days of observation. The cell number of the Zh culture fell to nearly one-third of the starting value by day 15 of observation. On day 15, this indicator constituted 1/7.45 for mitomycin C and 1/10.28 for mitomycin C + DNA with reference to the control. The main target of the mitomycin C + DNA regimen was TAMRA+ tumor-initiating stem cells of the glioblastoma cell populations. The action of mitomycin C alone or in the combination with DNA demonstrated effective elimination of TAMRA+ tumor-initiating stem cells and the whole primary cultures of human glioblastomas.

About the Authors

E. V. Dolgova
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



A. S. Proskurina
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



E. A. Potter
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



T. V. Tyrinova
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



O. S. Taranov
The State Research Center of Virology and Biotechnology “Vector"
Russian Federation

Koltsovo, Novosibirsk region



Ya. R. Efremov
Institute of Cytology and Genetics SB RAS; Novosibirsk State University
Russian Federation

Novosibirsk



K. E. Orishchenko
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



S. V. Mishinov
First Department of Neurosurgery, Y.L. Tsivian Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


V. V. Stupak
First Department of Neurosurgery, Y.L. Tsivian Novosibirsk Research Institute of Traumatology and Orthopaedics
Russian Federation


A. A. Ostanin
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



E. R. Chernykh
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk



S. S. Bogachev
Institute of Cytology and Genetics SB RAS
Russian Federation

Novosibirsk



References

1. Nikiforova Z.N., Kudryavtsev I.A., Arnotskaya N.E., Bryukhovetskiy I.S., Shevchenko V.E. Tumor stem cells from glioblastoma multiforme. Uspekhi Molekulyarnoy Onkologii = Advances in Molecular Oncology. 2016; 3:26-33. DOI 10.17650/2313-805X-2016-3-2-26-33. (in Russian)

2. Potter Е.А., Dolgova E.V., Proskurina A.S., Efremov Ya.R., Taranov O.S., Nikolin V.P., Popova N.A., Dubatolova T.D., Petrova D.D., Vereschagin E.I., Minke-vich А.М., Andrushkevich O.M., Baiborodin S.I., Rogachev V.A., Ostanin А.А., Chernykh E.R., Kolchanov N.A., Bogachev S.S. Development of the therapeutic regimen based on the synergistic activity of cyclophosphamide and double-stranded DNA preparation which results in complete cure of mice engrafted with Krebs-2 ascites. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(5):723-735. DOI 10.18699/VJ16.162. (in Russian)

3. Alyamkina E.A., Nikolin V.P., Popova N.A., Minkevich A.M., Ko-zel A.V., Dolgova E.V., Efremov Y.R., Bayborodin S.I., Andrushkevich O.M., Taranov O.S., Omigov V.V., Rogachev V.A., Proskurina A.S., Vereschagin E.I., Kiseleva E.V., Zhukova M.V., Ostanin A.A., Chernykh E.R., Bogachev S.S., Shurdov M.A. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts. Cancer Cell Int. 2015;15:32. DOI 10.1186/s12935-015-0180-6.

4. Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., De-whirst M.W., Bigner D.D., Rich J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-760. DOI 10.1038/nature05236.

5. Beier D., Hau P., Proescholdt M., Lohmeier A., Wischhusen J., Oef-ner P.J., Aigner L., Brawanski A., Bogdahn U., Beier C.P. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010-4015. DOI 10.1158/0008-5472.CAN-06-4180.

6. Brescia P., Richichi C., Pelicci G. Current strategies for identification of glioma stem cells: adequate or unsatisfactory? J. Oncol. 2012;2012: 376894. DOI 10.1155/2012/376894.

7. Carruthers R., Ahmed S.U., Strathdee K., Gomez-Roman N., Amoah-Buahin E., Watts C., Chalmers A.J. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol. Oncol. 2015;9(1):192-203. DOI 10.1016/j.molonc.2014.08.003.

8. Chen R., Nishimura M.C., Bumbaca S.M., Kharbanda S., Forrest W.F., Kasman I.M., Greve J.M., Soriano R.H., Gilmour L.L., Rivers C.S., Modrusan Z., Nacu S., Guerrero S., Edgar K.A., Wallin J.J., Lam-szus K., Westphal M., Heim S., James C.D., VandenBerg S.R., Costello J.F., Moorefield S., Cowdrey C.J., Prados M., Phillips H.S. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362-375. DOI 10.1016/j.ccr.2009.12.049.

9. Dahlrot R.H., Hansen S., Jensen S.S., Schrader H.D., Hjelmborg J., Kristensen B.W. Clinical value of CD133 and nestin in patients with glioma: a population-based study. Int. J. Clin. Exp. Pathol. 2014; 7(7):3739-3751.

10. Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishi-nov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378-1394. DOI 10.4161/cbt.29854.

11. Dolgova E.V., Mishinov S.V., Proskurina A.S., Potter E.A., Efremov Y.R., Bayborodin S.I., Tyrinova T.V., Stupak V.V., Ostatin A.A., Chernykh E.R., Bogachev S.S. Novel cancer stem marker and its applicability for grading primary human gliomas. Technol. Cancer Res. Treat. 2018;17:1533034617753812. DOI 10.1177/1533034617753812.

12. Gilbert C.A., Ross A.H. Glioma stem cells: cell culture, markers and targets for new combination therapies. Cancer Stem Cells Theories Practice. 2011. DOI 10.5772/13626.

13. Kase M., Minajeva A., Niinepuu K., Kase S., Vardja M., Asser T., Jaal J. Impact of CD133 positive stem cell proportion on survival in patients with glioblastoma multiforme. Radiol. Oncol. 2013;47(4):405-410. DOI 10.2478/raon-2013-0055.

14. McNeill K.A. Epidemiology of brain tumors. Neurol. Clin. 2016; 34(4):981-998. DOI 10.1016/j.ncl.2016.06.014.

15. Niedernhofer L.J., Odijk H., Budzowska M., Drunen E., Maas A., Theil A.F., Wit J., Jaspers N.G.J., Beverloo H.B., Hoeijmakers J.H.J., Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell Biol. 2004;24(13):5776-5787.

16. O’Brien C.A., Kreso A., Jamieson C.H.M. Cancer stem cells and selfrenewal. Clin. Cancer Res. 2010;16(12):3113-3120. DOI 10.1158/1078-0432.CCR-09-2824.

17. Omuro A., DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842-1850. DOI 10.1001/jama.2013.280319.

18. Potter E.A., Dolgova E.V., Proskurina A.S., Efremov Y.R., Minkevich A.M., Rozanov A.S., Peltek S.E., Nikolin V.P., Popova N.A., Seledtsov I.A., Molodtsov V.V., Zavyalov E.L., Taranov O.S., Baiborodin S.I., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Bogachev S.S. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget. 2017;8(6):9425-9441. DOI 10.18632/oncotarget.14116.

19. Potter E.A., Dolgova E.V., Proskurina A.S., Minkevich A.M., Efremov Y.R., Taranov O.S., Omigov V.V., Nikolin V.P., Popova N.A, Bayborodin S.I., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Shurdov M.A., Bogachev S.S. A strategy to eradicate well-developed Krebs-2 ascites in mice. Oncotarget. 2016;7(10):11580-11594. DOI 10.18632/oncotarget.7311.

20. Qiang L., Yang Y., Ma Y., Chen F., Zhang L., Liu W., Qi Q., Lu N., Tao L., Wang X., You Q., Guo Q. Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett. 2009;279:13-21. DOI 10.1016/j.canlet.2009.01.016.

21. Schreck K.C., Taylor P., Marchionni L., Gopalakrishnan V, Bar E.E., Gaiano N., Eberhart C.G. The notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin. Cancer Res. 2010;16(24):6060-6070. DOI 10.1158/1078-0432.CCR-10-1624.

22. Takezaki T., Hide T., Takanaga H., Nakamura H., Kuratsu J., Kon-do T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011;102(7):1306-1312. DOI 10.1111/j.1349-7006.2011.01943.x.

23. Wang Y., Xu C., Du L.Q., Cao J., Liu J.X., Su X., Zhao H., Fan F., Wang B., Katsube T., Fan S.J., Liu Q. Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int. J. Mol. Sci. 2013;14(11):22449-22461. DOI 10.3390/ijms141122449.

24. Zhang M., Song T., Yang L., Chen R., Wu L., Yang Z., Fang J. Nes-tin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J. Exp. Clin. Cancer Res. 2008; 27:85. DOI 10.1186/1756-9966-27-85.


Review

Views: 734


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)