Мутация yellow в локусе agouti устраняет возрастное повышение экспрессии генов белков, регулирующих окисление жирных кислот в мышцах у мышей


https://doi.org/10.18699/VJ18.358

Полный текст:


Аннотация

Мутация yellow в локусе agouti (Ay мутация), снижающая активность меланокортиновых рецепторов, с возрастом вызывает гиперфагию, ожирение и диабет второго типа у мышей (Ay мыши). Неизвестно, будут ли у Ay мышей изменения в отдельных звеньях метаболической системы (белый и бурый жир и мышцы) проявляться еще до развития ожирения. Цель работы – измерить у Ay мышей относительную экспрессию генов ключевых белков, регулирующих углеводно-жировой обмен в белом и буром жире и скелетной мускулатуре на этапах развития, предшествующих формированию ожирения. Исследовали мышей линии C57Bl/6J, несущих доминантную аутосомную мутацию Ay (Ay /a мыши), и мышей стандартного генотипа данной линии (a/a мыши, контроль) в трех возрастных группах: 10, 15 и 30 нед. Методом ПЦР в реальном времени измеряли относительный уровень мРНК генов в мышцах: uncoupling protein 3 (Ucp3) и carnitine palmitoyl transferase 1b (Cpt1b) (окисление СЖК), solute carrier family 2 (facilitated glucose transporter), member 4 (Slc2a4) (захват глюкозы); в белом жире: lipoprotein lipase (Lpl) (депонирование триглицеридов), hormone-sensitive lipase (Lipe) (мобилизация жиров) и Slc2a4 (захват глюкозы); в буром жире: uncoupling protein 1 (Ucp1) (расход энергии). В молодом возрасте (10 нед) у Ay мышей в мышцах была снижена экспрессия Cpt1b, в 15 нед у них отсутствовал транзиторный пик транскрипции Cpt1b, Ucp3 в мышцах, а также Lipe и Slc2a4 в белом жире, который отмечался у a/a мышей. Снижение транскрипционной активности исследованных генов в скелетных мышцах и белом жире может инициировать развитие меланокортинового ожирения у Ay мышей.

Об авторах

Ю. В. Пискунова
Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


А. Ю. Казанцева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


А. В. Бакланов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Н. М. Бажан
Новосибирский национальный исследовательский государственный университет; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. An J.J., Rhee Y., Kim S.H., Kim D.M., Han D.H., Hwang J.H., Jin Y.J., Cha B.S., Baik J.H., Lee W.T., Lim S.K. Peripheral effect of α-melanocyte-stimulating hormone on fatty acid oxidation in skeletal muscle. J. Biol. Chem. 2007;282(5):2862-2870. DOI 10.1074/jbc. M603454200.

2. Bahzan N.M., Yakovleva T.V., Baginskaya N.V., Shevchenko A.Yu., Makarova E.N. Changes of lipid-carbohydrate metabolism during the development of melanocortin obesity in mice with the Agouti Yellow mutation. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2005;91(12):1445-1453. (in Russian)

3. Bonnefont J.P., Djouadi F., Prip-Buus C., Gobin S., Munnich A., Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol. Asp. Med. 2004;25(5):495-520. DOI 10.1016/j.mam.2004.06.004.

4. Brito M.N., Brito N.A., Baro D.J., Song C.K., Bartness T.J. Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology. 2007;148(11):5339-5347. DOI 10.1210/en.2007-0621.

5. Cannon B., Nedergaard J.A.N. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004;84(1):277-359. DOI 10.1152/physrev.00015.2003.

6. Carmen G.-Y., Victor S.-M. Signalling mechanisms regulating lipolysis. Cell. Sign. 2006;18:401-408. DOI 10.1016/j.cellsig.2005.08.009. Carroll L., Voisey J., Van Daal A. Mouse models of obesity. Clin. Dermatol. 2004;22(4):345-349. DOI 10.1016/j.clindermatol.2004.01.004.

7. Chiu S., Fisler J.S., Espinal G.M., Havel P.J., Stern J.S., Warden C.H. The yellow agouti mutation alters some but not all responses to diet and exercise. Obes. Res. 2004;12(8):1243-1255.

8. Claycombe K.J., Xue B.Z., Mynatt R.L., Zemel M.B., Moustaid-Moussa N. Regulation of leptin by agouti. Physiol. Genomics. 2000;2(3): 101-105.

9. Cummings D.E., Merriam G.R. Age-related changes in growth hormone secretion: Should the somatopause be treated? Semin. Reprod. Endocr. 1999;17(4):311-325. DOI 10.1055/s-2007-1016241.

10. Figueiredo P.A., Powers S.K., Ferreira R.M., Amado F., Appell H.J., Duarte J.A. Impact of lifelong sedentary behavior on mitochondrial function of mice skeletal muscle. J. Geront. Ser. A Biol. Sci. Med. Sci. 2009;64(9):927-939. DOI 10.1093/gerona/glp066.

11. Fridlyand L.E., Philipson L.H. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes. Metab. 2006; 8(2):136-145. DOI 10.1111/j.1463-1326.2005.00496.x.

12. Gantz I., Fong T.M. The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 2003;284(3):468-474. DOI 10.1152/ajpendo.00434.2002.

13. Goldberg I.J., Merkel M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front. Biosci. 2001;6(6):D388-D405.

14. Gong L., Yao F., Hockman K., Heng H.H., Morton G.J., Takeda K., Akira S., Low M.J., Rubinstein M., MacKenzie R.G. Signal transducer and activator of transcription-3 is required in hypothalamic agouti-related protein/neuropeptide Y neurons for normal energy homeostasis. Endocrinology. 2008;149(7):3346-3354. DOI 10.1210/en.2007-0945.

15. Im S.S., Kwon S.K., Kim T.H., Kim H.I., Ahn Y.H. Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes. IUBMB Life. 2007;59(3):134-145. DOI 10.1080/ 15216540701313788.

16. Karpe F., Dickmann J.R., Frayn K.N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60(10):2441- 2449. DOI 10.2337/db11-0425.

17. Kelly D.M., Jones T.H. Testosterone: A metabolic hormone in health and disease. J. Endocrin. 2013;217(3):R25-R45. DOI 10.1530/JOE12-0455.

18. Kersten S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta (BBA)-Molec. Сell. Biol. Lipids. 2014;1841(7):919-933. DOI 10.1016/j.bbalip.2014.03.013.

19. Kim J.Y., Tillison K., Lee J.-H., Rearick D.A., Smas C.M. The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARγ. Am. J. Physiol. Endocr. Metab. 2006;291:E115- E127. DOI 10.1152/ajpendo.00317.2005.

20. Kim T., He L., Johnson M.S., Li Y., Zeng L., Ding Y., Long Q., Moore J.F., Sharer J.D., Nagy T.R., Young M.E., Wood P.A., Yang Q. Carnitine palmitoyltransferase 1b deficiency protects mice from diet-induced insulin resistance. J. Diabetes Metab. 2014;5(4):361. DOI 10.4172/2155-6156.1000361.

21. Lass A., Zimmermann R., Oberer M., Zechner R. Lipolysis – а highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid. Res. 2011;50:14-27. DOI 10.1016/j.plipres. 2010.10.004.

22. Lee M.S., Kim I.H., Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C2C12 muscle cells. Nutrients. 2013;5(5):1660-1671. DOI 10.3390/ nu5051660.

23. Lee Y.S. The role of leptin-melanocortin system and human weight regulation: lessons from experiments of nature. Ann. Acad. Med. Singapore. 2009;38(1):34-44.

24. Liu H.Y., Zheng G., Zhu H., Woldegiorgis G. Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase I gene expression in vivo. Arch. Biochem. Biophys. 2007;465(2):437-442. DOI 10.1016/j.abb.2007.06.026.

25. Makarova E.N. Agouti proteins, new regulators of melanocortin receptors. Uspekhi sovremennoy biologii = Advances in Current Biology. 2002;122(4):365-375. (in Russian)

26. Michaud E.J., Bultman S.J., Klebig M.L., Van Vugt M.J., Stubbs L., Russell L.B., Woychik R.P. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc. Natl. Acad. Sci. USA. Genetics. 1994;91(7):2562-2566.

27. Murea M., Ma L., Freedman B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. 2012;9(1):6-22. DOI 10.1900/RDS.2012.9.6.

28. Nakamura Y., Sato T., Shiimura Y., Miura Y., Kojima M. FABP3 and brown adipocyte-characteristic mitochondrial fatty acid oxidation enzymes are induced in beige cells in a different pathway from UCP1. Biochem. Biophys. Res. Com. 2013;441(1):42-46. DOI 10.1016/j.bbrc.2013.10.014.

29. Niu Y., Yuan H., Fu L. Aerobic exercise’s reversal of insulin resistance by activating AMPKα-ACC-CPT1 signaling in the skeletal muscle of C57BL/6 mice. Int. J. Sport Nutr. Exerc. Metab. 2010;20(5): 370-380.

30. Osadchuk L.V., Kleshchev M.A., Baklanov A.V., Bazhan N.M. Testicular function and lipid metabolism in male mice with hereditary predisposition to obesity. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2016; 102(3):340-350. (in Russian)

31. Physiology. Eds. R.M. Berne, M.N. Levy, B.M. Koeppen, B.A. Stanton. St. Louis: Mosby, 2004;1014. Richelsen B., Pedersen S.B., Kristensen K., Børglum J.D., Nørrelund H., Christiansen J.S., Jørgensen J.O. Regulation of lipoprotein lipase and hormone-sensitive lipase activity and gene expression in adipose and muscle tissue by growth hormone treatment during weight loss in obese patients. Metab. Clin. Exp. 2000;49(7):906- 911. DOI 10.1053/meta.2000.6738.

32. Shaw A.M., Irani B.G., Moore M.C., Haskell-Luevano C., Millard W.J. Ghrelin-induced food intake and growth hormone secretion are altered in melanocortin 3 and 4 receptor knockout mice. Peptides. 2005;26(10):1720-1727.

33. Shen Y., Xu X., Yue K., Xu G. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats. Obesity. 2015;23(5):1000-1006. DOI 10.1002/ oby.21056.

34. Shi W., Hu S., Wang W., Zhou X., Qiu W. Skeletal muscle-specific CPT1 deficiency elevates lipotoxic intermediates but preserves insulin sensitivity. J. Diabetes. Res. 2013;2013:163062. DOI 10.1155/ 2013/163062.

35. Silva A.A., Carmo J.M., Wang Z., Hall E.J. The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology. 2014;29(3):196-202. DOI 10.1152/physiol.00061.2013.

36. Slocum N., Durrant J.R., Bailey D., Yoon L., Jordan H., Barton J., Brown R., Clifton H., Milliken L., Harrington T., Kimbrough W., Faber C., Cariello C.A., Elangb. N. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment. Exp. Toxicol. Pathol. 2013;65(5):549-557. DOI 10.1016/j.etp.2012.04.001.

37. Talbot D.A., Lambert A.J., Brand M.D. Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett. 2004;556(1):111-115.

38. Tare R.S., Oreffo R.O., Sato K., Rauvala H., Clarke N.M., Roach H.I. Effects of targeted overexpression of pleiotrophin in postnatal bone development. Biochem. Biophys. Res. Com. 2002;298(3):324-332.

39. Varlamov O., Bethea C.L., Roberts C.T. Sex-specific differences in lipid and glucose metabolism. Front. Endocrinol. 2014;5:241. DOI 10.3389/fendo.2014.00241.

40. Waalen J. The genetics of human obesity. Transl. Res. 2014;164(4):293- 301. DOI 10.1038/nrg1556.

41. Wolff G.L., Kodell R.L., Kaput J.A., Visek W.J. Caloric restriction abolishes enhanced metabolic efficiency induced by ectopic agouti protein in yellow mice. Exp. Biol. Med. 1999a;221(2):99-104.

42. Wolff G.L., Roberts D.W., Mountjoy K.G. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol. Genomics. 1999b;1(3):151-163.

43. Yakar S., Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis. Lessons from mouse models. Growth Horm. IGF Res. 2016;28:26-42. DOI 10.1016/j.ghir.2015.09.004.

44. Yang J.Y., Koo J.H., Yoon H.Y., Lee J.H., Park B.H., Kim J.S., Chi M.S., Park J.W. Effect of scopoletin on lipoprotein lipase activity in 3T3- L1 adipocytes. Int. J. Mol. Med. 2007;20(4):527-531.

45. Ying H.Z., Zang J.N., Deng L.L., Wang Z.Y., Yu C.H. Pentamethylquercetin reduces fat deposition via Sirt1-mediated pathways in male obese mice induced by a high-fat diet. Food Chem. Toxicol. 2013;62:463-469. DOI 10.1016/j.fct.2013.09.002.


Дополнительные файлы

Просмотров: 36

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)