Green gram and black gram: prospects of cultivation and breeding in Russian Federation
https://doi.org/10.18699/VJ18.438
Abstract
Diversifcation of crop production in the Russian Federation could be partly achieved by the introduction and production of minor and underutilized crops. Green gram or mung bean (Vigna radiata (L.) R. Wilczek) and black gram or urd (V. mungo (L.) Hepper) are grain legume crops cultivated in limited areas in the Russian Federation. Meanwhile, green gram occupies about 8.5 % of the world production area under pulses (without soybean). It is cultivated mainly in countries of Southeast Asia, but production is expanding to the entire subtropical belt of the globe. In our country these crops can be successfully grown on irrigation in a number of regions in the southern area of the European part and the Russian Far East, where the temperatures during their vegetation are about 28–30 °C and always above 15 °C. The purpose of this paper is to summarize the world’s experience in breeding improvement of mung bean and urd as crops with promise for cultivation in certain soil and climatic zones of the Russian Federation. The world production, use of these high-protein crops, history and peculiarities of breeding, including in the USSR, are covered. To expand the production of both crops in the Russian Federation, their popularization and development of breeding are required. Basic requirements for modern varieties include resistance to biotic and abiotic stressors which can be introgressed from wild relatives. The great importance of both crops in the Asian countries led to the rapid development of molecular researches there. The genome of black gram has been fully sequenced, the genome of green gram has been partly sequenced. Some genes and QTL of adaptability traits have been marked and mapped in a number of wild species of the genus Vigna. The role of wild relatives in the breeding of crops concerned is discussed. In the world genebanks, signifcant genetic resources of mung bean and urd have been accumulated. All this creates prerequisites for the development of marker-assistant and genomic breeding.
About the Authors
M. A. VishnyakovaRussian Federation
St. Petersburg
M. O. Burlyaeva
Russian Federation
St. Petersburg
M. G. Samsonova
Russian Federation
St. Petersburg
References
1. Burlyaeva M.O., Gurkina M.V., Tikhonova N.I. Mung bean and mungo bean: The initial material for breeding under irrigation in the Caspian Lowland. Catalog of the World VIR Collection. St. Petersburg, 2014; Issue 818. (in Russian)
2. Burlyaeva M.O., Gurkina M.V., Chebukin P.A. Species of the genus Vigna Savi in the VIR collection: ecogeographical diversity and prospects for use. Proc. of the XIV Congress of the Russian Botanical Society and the conference “Botany in the Modern World”. Makhachkala, 2018; 2:371-373. (in Russian)
3. Burlyaeva M.O., Gurkina M.V., Chebukin P.A., Kiseleva N.A. International descriptor of species of the genus Vigna Savi. St. Petersburg, 2016. (in Russian)
4. Vishnyakova M.A., Buravtseva T.V., Bulyntsev S.V., Burlyaeva M.O., Semenova E.V., Seferova I.V., Aleksandrova T.G., Yan’kov I.I., Egorova G.P. The strategy and tactics of mobilizing the genetic resources of grain legumes to the VIR collection at the turn of the XX–XXI centuries. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings Applied Botany, Genetics, and Breeding. St. Petersburg, 2012;169:41-52. (in Russian)
5. Gafurov B.G. Tajiks: the most ancient, ancient and medieval history. Dushanbe, 1989; V. 1. (in Russian)
6. Ditmer E.E., Ivanov N.R., Popova G.M. Phaseolus L. Common Beans. Cultural Flora of the USSR. Grain Legumes. Moscow; Leningrad, 1937;IV:457-621. (in Russian)
7. Ivanov N.R. New grain legumes for southern regions of the USSR. Achievements and Prospects in Applied Botany, Genetics, and Breeding. Leningrad, 1929:267-278. (in Russian)
8. Ivanov N.R. Common Beans. Moscow; Leningrad, 1949. (in Russian)
9. Kuryanovich A.A. Change of the water regime parameters of green gram (Vigna radiata L. (R) Wilczek) as an indicator of its adaptability to the conditions of the Middle Volga region. Proc. III Int. conf. “The Role of Physiology and Biochemistry in the Introduction and Breeding of Vegetables, Berries, and Medicinal Plants”, Moscow, February 15–17, 2017;289-292. (in Russian)
10. Nosirova M.D. The influence of cultivation techniques on photosynthetic, symbiotic parameters and productivity of green gram (Vigna radiate (L.) R. Wilczek). Izvestiya Kaliningradskogo Gosudarstvennogo Tekhnicheskogo Universiteta = Proceedings of the Kaliningrad State Technical University. 2012;27:200-205. (in Russian)
11. Pavlova A.M. Green gram varieties for new areas of irrigated agriculture. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings Applied Botany, Genetics, and Breeding. 1952;29:67-70. (in Russian)
12. Pavlova A.M. The results of the study of the initial material of grain legumes at the Central Asian VIR experimental station. Breeding, Agricultural Technology of Cereals in Central Asia: Proc. scientifc conf. to increasing grain production in Central Asia. Tashkent, 1966; 118-124. (in Russian)
13. Pavlova A.M., Glushenkova N.I. Legume plants in stubble crops in Uzbekistan. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1962;34: 63-71. (in Russian)
14. Adsule R.N., Kadam S.S., Salunkhe D.K. Chemistry and technology of green gram (Vigna radiata [L.] Wilczek). Crit. Rev. Food Sci. Nutr. 1986;25(1):73-105.
15. Afzal M.A., Murshad A.N.M.M.M., Bakar M.A., Hamid A., Salahuddin A.B.M. Mungbean Cultivation in Bangladesh. Pulse Research Station, Bangladesh Agricultural Research Institute: Gazipur, Bangladesh, 2008.
16. Akpapunam M. Mung bean (Vigna radiate (L.) Wilczek). Eds. E. Nwokolo, J. Smartt. Food and Feed from Legumes and Oilseeds. New York: Chapman and Hall, 1996;209-215.
17. Ali M., Gupta S. Carrying capacity of Indian agriculture: Pulse crops. Curr. Sci. 2012;102(6):874-881.
18. Anwar F., Latif S., Przybylski R., Sultana B., Ashraf M. Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. J. Food Sci. 2007;72(7):503-510.
19. Arumuganathan K., Earle E.D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 1991;9:208-218.
20. Aykroyd W.R., Doughty J. Legumes in human nutrition. FAO Nutritional Studies No. 19. Rome: Food and Agriculture Organization of the United Nations, 1964.
21. Baligar V.C., Fageria N.K. Agronomy and physiology of tropical cover crops. J. Plant Nutr. 2007;30(8):1287-1339.
22. Bisht I.S., Singh M. Germplasm utilization. Genetic and Genomic Resources of Grain Legume Improvement. London: Elsevier Science, 2013;248-253. DOI 10.1016/B978-0-12-397935-3.00010-4.
23. Castillo C., Fuller D. Still too fragmentary and dependent upon chance? Advances in the study of early Southeast Asian archaeobotany. Eds. B. Bellina, E.A. Bacus, O. Pryce, J. Weissman Christie. Fifty Years of Archaeology in Southeast Asia: Essays in Honour of Ian Glover. Bangkok; London: River Books, 2010; 91-111.
24. Chaitieng B., Kaga A., Tomooka N., Isemura T., Kuroda Y., Vaughan D.A. Development of a black gram [Vigna mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] linkage map. Theor. Appl. Genet. 2006; 113(7):1261-1269.
25. Chandel K.P.S., Lester R.N.F., Starling R.J. The wild ancestors of urid and mung beans (Vigna mungo (L.) Hepper and V. radiate (L.) Wilczek). Bot. J. Linn. Soc. 1984;89:85-96. DOI 10.1111/j.1095-8339.1984.tb01002.x.
26. Chankaew S., Isemura T., Naito K., Ogiso-Tanaka E., Tomooka N., Somta P., Kaga A., Vaughan D.A., Srinives P. QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor. Appl. Genet. 2014;127(3):691- 702. DOI 10.3390/ijerph120605685.
27. Chivenge P., Mabhaudhi T., Modi A.T., Mafongoya P. The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public. Health. 2015;12:5685-5711. DOI 10.3390/ijerph120605685.
28. CRN (Core Road Network) India, 2011. http://www.crnindia.com/commodity/urad.html.
29. Dana S. The cross between Phaseolus aureus Roxb. and P. mungo L. Genetica. 1966;37:259-274.
30. Dе D.N., Krishnan R. Cytological studies of the hybrid Phaseolus aureus ×P. mungo. Genetica. 1966;37:588-600.
31. Dempewolf H., Baute G., Anderson J., Kilian B., Smith C., Guarino L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017;57:1070-1082. DOI 10.2135/cropsci2016.10.0885.
32. Dikshit H.K., Jhang T., Singh N.K., Koundal K.R., Bansal K.C., Chandra N., Tickoo J.L., Sharma T.R. Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biol. Plant. 2007;51(3): 451-457.
33. Ebert A. Ex situ conservation of plant genetic resources of major vegetables. Eds. M.N. Normah, H.F. Chin, B.M. Reed. Conservation of Tropical Plant Species. New York: Springer Science+Business Media, 2013;373-417.
34. Establishing the International Mungbean Improvement Network, 2016. https://avrdc.org/intl-mungbean-network (date of the application 29.09.2018).
35. Fuller D.Q. Contrasting patterns in crop domestication and domestication rates: recent archaeo-botanical insights from the Old World. Ann. Bot. 2007;100(5):903-924.
36. Fuller D.Q., Harvey E. The archaeobotany of Indian pulses: identifcation, processing and evidence for cultivation. Env. Archaeol. 2006; 11(2):219-246.
37. Guleria P., Kumar V. Understanding the phenylpropanoid pathway for agronomical and nutritional improvement of mungbean. J. Hort. Sci. Biotech. 2017;92:335-348.
38. Gupta S.K., Souframanien J., Gopalakrishna T. Construction of a genetic linkage map of black gram, Vigna mungo (L.) Hepper, based on molecular markers and comparative studies. Genome. 2008;51:628- 637. DOI 10.1139/G08-050.
39. Ignacimuthu S., Babu C.R. Breeding potential of Vigna sublobata (Roxb.) in the improvement of mung bean. Curr. Sci. 1984;53:786- 788.
40. ILDIS World Database of Legumes. 2009. International Legume Database & Information Service. http://www.ildis.org.
41. Indira M., Kurup P.A. Blackgram a hypolipimic pulse. Nat. Prod. Radiance. 2003;2(5):240-242.
42. Iseki K., Takahashi Y., Muto C., Naito K., Tomooka N. Diversity and evolution of salt tolerance in the genus Vigna. PLoS One. 2016; 1(10):e0164711.
43. Iseki K., Takahashi Y., Muto C., Naito K., Tomooka N. Diversity of drought tolerance in the genus Vigna. Front. Plant Sci. 2018;9:729. DOI 10.3389/fpls.2018.00729.
44. Jaaska V., Jaaska V. Isoenzyme differentiation between Asian beans Vigna radiate and V. mungo. Biochem. Physiol. Pflanzen. 1989;185: 41-53.
45. Jansen P.C.M. Vigna mungo (L.) Hepper. Record from Protabase. PROTA (Plant Resources of Tropical Africa. Wageningen, 2006.
46. Javed I., Ahmad H.M., Ahsan M., Ali Q., Ghani M.U., Iqbal M.S., Rashid M., Akram H.N. Induced genetic variability by gamma radiation and traits association study in mung bean (Vigna radiata L.). Life Sci. J. 2014;11(8s):530-539.
47. Kang J.K., Kim S.K., Kim M.Y., Lestari P., Kim K.H., Ha B.K., Jun T.H., Hwang W.J., Lee T., Lee J., Shim S., Yoon M.Y., Jang Y.E., Han K.S., Taeprayoon P., Yoon N., Somta P., Tanya P., Kim K., Gwag J.G., Moon J.K., Lee Y.H., Park B.S., Bombarely A., Doyle J.J., Jackson S.A., Schafleitner R., Srinives P., Varshney R.K., Lee S-H. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 2014;5:5443.
48. Kang Y.J., Satyawan D., Shim S., Lee T., Lee J., Hwang W.J., Kim S.K., Lestari P., Laosatit K., Kim K.H., Ha T.J., Chitikineni A., Kim V.Y., Ko J.-M., Gwag J.-G., Moon J.-K., Lee Y.-H., Park B.-S., Varshney R.K., Lee S-H. Draft genome sequence of adzuki bean, Vigna angularis. Sci. Rep. 2015;5:8069.
49. Keatinge J.D.H., Easdown W.J., Yang R.Y., Chadha M.L., Shanmugasundaram S. Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica. 2011;180:129-141.
50. Kim S.K., Nair R.M., Lee J., Lee S.-H. Genomic resources in mungbean for future breeding programs. Front. Plant Sci. 2015;6:626.
51. Krishna K.R. Agroecosystems of South India: Nutrient Dynamics, Ecology and Productivity. Boca Raton, Fla.: Brown Walker Press, 2010.
52. Kumar V.L., Singhal A. Germinating seeds of the mung bean, Vigna radiata (Fabaceae), as a model for the preliminary evaluation of cytotoxic effects of drugs. Biocell. 2009;33(1):19-24.
53. Lawn R.J., Ahn C.S. Mungbean (Vigna radiate (L.) Wilczek Vigna mungo (L.) Hepper). Eds. R.J. Summerfeld, E.H. Roberts. Grain Legume Crops. London: William Collins Sons & Co. Ltd, 1985;584-623.
54. Lawn R.J., Cottrell A. Wild mungbean and its relatives in Australia. Bilogist. 1988;35:267-273.
55. Liu C., Wu J., Wang L., Fan B., Cao Z., Su Q., Zhang Z., Wang•Y., Tian J., Wang S. Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor. Appl. Genet. 2017. DOI 10.1007/s00122-017-2965-6.
56. Marechal R., Mascherpa J.M., Stainier F. Etude taxonomique d’un groupe complexe d’especes des genres Phaseolus et Vigna (Papilionaceae) sur la base de donnees morphologiques et polliniques, traitees par l’analyse informatique. Boissiera. 1978;28:1-273.
57. Mathivathana M.К., Jagadeeshselvam N., Madhumitha B., Karthikeyan A., Pandiyan M., Karthikeyan G., Vanniarajan C., Raveendran M., Senthil N., Sudha M. Screening and identifcation of SSR markers for genetic diversity for Mung bean [Vigna radiata (L.) Wilczek]. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(04):789-793.
58. McCouch S., Baute G.J., Bradeen J., Bramel P., Bretting P.K., Buckler E., Burke J.M., Charest D., Cloutier S., Cole G., Dempewolf H., Dingkuhn M., Feuillet C., Gepts P., Grattapaglia D., Guarino L., Jackson S., Knapp S., Langridge P., Lawton-Rauh A., Lijua Q., Lusty C., Michael T., Myles S., Naito K., Nelson R.L., Pontarollo R., Richards C.M., Rieseberg L., Ross-Ibarra J., Rounsley S., Hamilton R.S., Schurr U., Stein N., Tomooka N., van der Knaap E., van Tassel D., Toll J., Valls J., Varshney R.K., Ward J., Waugh R., Wenzl P., Zamir D. Agriculture: Feeding the future. Nature. 2013; 499:23-24. DOI 10.1038/499023a.
59. Mogotsi K.K. Vigna radiate (L.) R. Wilczek. PROTA 1: Cereals and pulses/Céréales et légumes secs. PROTA, Wageningen, Netherlands, 2006.
60. Nath A., Maloo S.R., Barman K.K., Meena B.L., Devi G., Yadav G.S., Tak S. Molecular characterization of green gram [Vigna radiata (L.) Wilczek] for future breeding programme. Int. J. Curr. Microbiol. Appl. Sci. 2017;6(6):1385-1398.
61. Oghbaei M., Prakash J. Nutritional, ling on total and bioaccessible nutrients and bioactive components. J. Food Sci. Technol. 2017;54(4): 871-879.
62. Padulosi S., Hodgkin T., Williams J.T., Haq N. Underutilized crops: trends, challenges and opportunities in the 21th century. Managing Plant Diversity. Wallingford, U K, CAB International, 2002;323-338.
63. Pandiyan M., Senthil N., Ramamoorthi N., Muthiah A.R., Tomooka N., Duncan V., Jayaraj T. Interspecifc hybridization of Vigna radiata×13 wild Vigna species for developing MYMV donar. Electron. J. Plant Breed. 2010;1:600-610.
64. Protein quality evaluation: report of the Joint FAO/WHO Expert Consultation, Bethesda, Md., USA, 4–8 December 1989. Rome, Italy: Food and Agricultural Organization of the United Nations. 1991.
65. Purseglove J.W. Tropical Crops: Dicotyledons. London, 1977.
66. Ravi J., Singh J.P., Minocha J.L. Meiotic behaviour of interspecifc hybrids V. radiata×V. mungo. Proc. First Symp. Crop Improvement. Coimbatore, India, 1987;58-59.
67. Schafleitner R., Nair R., Rathore A., Wang Y., Lin C., Chu S.H., Lin P.Y., Chang J.C., Ebert A.W. The AVRDC – The world vegetable center mungbean (Vigna radiata) core and mini core collections. BMC Genomics. 2015;16(1):344. DOI 10.1186/s12864-015-1556-7.
68. Sen N.K., Ghosh A.K. Interspecifc hybridization between Phaseolus aureus Roxb. (green gram) and Ph. mungo L. (black gram). Bull. Bot. Soc. Bengal. 1963;14:1-4.
69. Sharma O.P., Bambawale O.M., Gopali J.B., Bhagat S., Yelshetty S., Singh S.K., Anand R., Singh O.M. Field guide mung bean and urd bean. Government of India, Department of Agricultural and Cooperation, NCIPM, ICAR, New Delhi, India, 2011.
70. Sharma P., Mishra N.K. Ethno-medicinal uses and agro-biodiversity of Barmana region in Bilaspur district of Himachal Pradesh, Northwestern Himalaya. Ethnobotanical Leaflets. 2009;13:709-721.
71. Singh B.V., Ahuja M.R. Phaseolus sublobata Roxb: A source of resistance to yellow mosaic virus for cultivated mung. Indian J. Genet. 1977;37:130-132.
72. Souframanien J., Dhanasekar P. Advances in greengram and blackgram genomics. Legumes in the Omic Era. New York, 2014;155-184. DOI 10.1007/978-1-4614-8370-0_8.
73. Souframanien J., Gopalakrishna T. ISSR and SCAR markers linked to the mungbean yellow mosaic virus (MYMV) resistance gene in blackgram [Vigna mungo (L.) Hepper]. Plant Breed. 2006;125: 619-622.
74. Souframanien J., Reddy K.S. De novo assembly, characterization of immature seed transcriptome and development of genic-SSR markers in black gram [Vigna mungo (L.) Hepper]. PLoS One. 2015;10(6): e0128748. DOI 10.1371/journal.pone.0128748.
75. Srinives P., Somta P., Sompta Ch. Genetics and breeding of resistance to bruchids (Callosobruchus spp.) in Vigna crops: A review. NU Int. J. Sci. 2007;4(1):1-17.
76. Stagnari F., Maggio A., Galieni A., Pisante M. Multiple benefts of legumes for agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 2017;4(2):1-13.
77. Takahashi Y., Somta P., Muto C., Iseki K., Naito K., Pandiyan M., Natesan S., Tomooka N.. Novel genetic resources in the genus Vigna unveiled from gene bank accessions. PLoS One. 2016;11(1):e0147568.
78. Tomooka N., Naito K., Kaga A., Sakai H., Isemura T., Ogiso-Tanaka E., Iseki K., Takahashi Y. Evolution, domestication and neo-domestication of the genus Vigna. Plant Genet. Resour. 2014;12:S168-S171. DOI 10.1017/S1479262114000483.
79. Tomooka N., Vaughan D.A., Moss H., Mixted N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources. New York: Kluwer, 2003.
80. Tresina P.S., Daffodil D.E., Lincy P., Mohan V.R. Assesment of biochemical composition and nutritional potential of three varieties of Vigna radiata (L.) Wilezek. Biolife. 2014;2(2):655-667.
81. Tresina P.S., Kamatchi A., Kala B., Mohan V.R., Vadivel V. The biochemical composition and nutritional potential of three varieties of Vigna mungo (L.) Hepper. Adv. Biores. 2010;1(2):6-16.
82. Verdcourt B. Studies in the Leguminosae – Papilionoideae for the “Flora of Tropical East Africa”: IV. Kew Bull. 1970;24.
83. Verma R.P.S., Singh D.P. Problems and prospects of interspecifc hybridization involving green gram and black gram. Indian J. Agric. Sci. 1986;56:535-537.
84. Vishalakshi B., Umakanth B., Shanbhag A.P., Ghatak A., Sathyanarayanan N., Madhav M.S., Krishna G.G., Yadla H. RAPD assisted selection of black gram (Vigna mungo L. Hepper) towards the development of multiple disease resistant germplasm. 3 Biotech. 2017; 7(1):1.
85. Watt E.E., Marechal R. The differences between mung and urid beans. Trop. Grain Bull. 1977;7:31-33.
86. Yoshida Y., Marubodee R., Ogiso-Tanaka E., Iseki K., Isemura T., Takahashi Y., Somta P., Muto C., Iseki K., Naito K., Pandiyan M., Natesan S., Tomooka N. Salt tolerance in wild relatives of adzuki bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet. Resour. Crop Evol. 2016;63:627. DOI 10.1007/s10722-015-0272-0.