Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
https://doi.org/10.18699/VJ18.445
Abstract
Generation of induced pluripotent stem (iPS) cells expanded possibilities of pluripotency and early development studies. Generation of order Carnivora iPS cells from dog (Canis lupus familiaris), snow leopard (Panthera uncia), and American mink (Neovison vison) was previously reported. The aim of the current study was to examine conditions of pinniped fbroblast reprogramming. Pinnipeds are representatives of the suborder Caniformia sharing conservative genomes. There are several ways to deliver reprogramming transcription factors: RNA, proteins, plasmids, viral vectors etc. The most effective delivery systems for mouse and human cells are based on viral vectors. We compared a lentiviral vector which integrates into the genome and a Sendai virusbased vector, CytoTune EmGFP Sendai Fluorescence Reporter. The main advantage of Sendai virusbased vectors is that they do not integrate into the genome. We performed delivery of genetic constructions carrying fluorescent proteins to fbroblasts of seven Pinnipeds: northern fur seal (Callorhinus ursinus), Steller sea lion (Eumetopias jubatus), walrus (Odobenus rosmarus), bearded seal (Erignathus barbatus), Baikal seal (Pusa sibirica), ringed seal (Phoca hispida), and spotted seal (Phoca largha). We also transduced American mink (N. vison), human (Homo sapiens), and mouse (Mus musculus) fbroblasts as a control. We showed that the Sendai virusbased transduction system provides transgene expression onetwo orders of magnitude higher than the lentiviral system at a comparable multiplicity of infection. Also, transgene expression after Sendai virusbased transduction is quite stable and changes only slightly at day four compared to day two. These data allow us to suggest that Sendai virusbased vectors are preferable for generation of Pinniped iPS cells.
About the Authors
V. R. BeklemishevaRussian Federation
Novosibirsk
A. G. Menzorov
Russian Federation
Novosibirsk
References
1. Boroda A.V., Peterson S.E., Montague S.C., Pivaroff C.G., Stein J.W., Lee C.-Y., Loring J.F., Odintsova N.A. Generating induced pluripotent stem cells from cryopreserved skin biopsies of Lake Baikal seal (Pusa sibirica) and Steller Sea Lion (Eumetopias jubatus). Proceedings of the VIII International Conference “Marine Mammals of the Holarctic”, St. Petersburg, Sept. 22–27, 2014, Vol. 1. Moscow, 2015:73-77. (in Russian)
2. Pristyazhnyuk I.E., Menzorov A.G. Generation of American mink induced pluripotent stem cells: a protocol. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(6):701-709. DOI 10.18699/VJ17.288 (in Russian)
3. Baird A., Barsby T., Guest D.J. Derivation of canine induced pluripotent stem cells. Reprod. Domest. Anim. 2015;50(4):669-676. DOI 10.1111/rda.12562.
4. Ban H., Nishishita N., Fusaki N., Tabata T., Saeki K., Shikamura M., Takada N., Inoue M., Hasegawa M., Kawamata S., Nishikawa S. Effcient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl. Acad. Sci. USA. 2011;108(34):14234-14239. DOI 10.1073/pnas.1103509108.
5. Coppiello G., Abizanda G., Aguado N., Iglesias E., Arellano-Viera E., Rodriguez-Madoz J.R., Carvajal-Vergara X., Prosper F., Aranguren X.L. Generation of Macaca fascicularis iPS cell line ATCiMF1 from adult skin fbroblasts using non-integrative Sendai viruses. Stem Cell Res. 2017;21:1-4. DOI 10.1016/j.scr.2017.03.008.
6. Cronin J., Zhang X.Y., Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 2005;5(4):387-398.
7. Cubitt A.B., Woollenweber L.A., Heim R. Understanding structurefunction relationships in the Aequorea victoria green fluorescent protein. Met. Cell Biol. 1999;58:19-30.
8. Fujie Y., Fusaki N., Katayama T., Hamasaki M., Soejima Y., Soga M., Ban H., Hasegawa M., Yamashita S., Kimura S., Suzuki S., Matsuzawa T., Akari H., Era T. New type of Sendai virus vector provides transgene-free iPS cells derived from chimpanzee blood. PLoS One. 2014;9(12):e113052. DOI 10.1371/journal.pone.0113052.
9. Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Effcient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009; 85(8):348-362.
10. Galat V., Galat Y., Perepitchka M., Jennings L.J., Iannaccone P.M., Hendrix M.J. Transgene reactivation in induced pluripotent stem cell derivatives and reversion to pluripotency of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Dev. 2016; 25(14):1060-1072. DOI 10.1089/scd.2015.0366.
11. Karwacki-Neisius V., Göke J., Osorno R., Halbritter F., Ng J.H., Weiße A.Y., Wong F.C., Gagliardi A., Mullin N.P., Festuccia N., Colby D., Tomlinson S.R., Ng H.H., Chambers I. Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell. 2013;12(5):531-545. DOI 10.1016/j.stem.2013.04.023.
12. Koh S., Thomas R., Tsai S., Bischoff S., Lim J.-H., Breen M., Olby N.J., Piedrahita J.A. Growth requirements and chromosomal instability of induced pluripotent stem cells (iPSC) generated from adult canine fbroblasts. Stem Cells Dev. 2012;22(6):951-963. DOI 10.1089/scd.2012.0393.
13. Lee A.S., Xu D., Plews J.R., Nguyen P.K., Nag D., Lyons J.K., Han L., Hu S., Lan F., Liu J., Huang M., Narsinh K.H., Long C.T., de Almeida P.E., Levi B., Kooreman N., Bangs C., Pacharinsak C., Ikeno F., Yeung A.C., Gambhir S.S., Robbins R.C., Longaker M.T., Wu J.C. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 2011; 286(37):32697-32704. DOI 10.1074/jbc.M111.235739.
14. Li H.O., Zhu Y.F., Asakawa M., Kuma H., Hirata T., Ueda Y., Lee Y.S., Fukumura M., Iida A., Kato A., Nagai Y., Hasegawa M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with effcient gene transfer and expression. J. Virol. 2000;74(14):6564- 6569.
15. Lu J., Liu H., Huang C.T., Chen H., Du Z., Liu Y., Sherafat M.A., Zhang S.C. Generation of integration-free and region-specifc neural progenitors from primate fbroblasts. Cell Rep. 2013;3(5):1580- 1591. DOI 10.1016/j.celrep.2013.04.004.
16. Luo J., Suhr S.T., Chang E.A., Wang K., Ross P.J., Nelson L.L., Venta P.J., Knott J.G., Cibelli J.B. Generation of leukemia inhibitory factor and basic fbroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev. 2011;20(10):1669-1678. DOI 10.1089/scd.2011.0127.
17. Maherali N., Sridharan R., Xie W., Utikal J., Eminli S., Arnold K., Stadtfeld M., Yachechko R., Tchieu J., Jaenisch R., Plath K., Hochedlinger K. Directly reprogrammed fbroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70. DOI 10.1016/j.stem.2007.05.014.
18. Menzorov A.G., Matveeva N.M., Markakis M.N., Fishman V.S., Christensen K., Khabarova A.A., Pristyazhnyuk I.E., Kizilova E.A., Cirera S., Anistoroaei R., Serov O.L. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC Genomics. 2015;16(Suppl. 13):S6. DOI 10.1186/1471-2164-16-S13-S6.
19. Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defnes differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 2000;24(4):372-376. DOI 10.1038/74199.
20. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317. DOI 10.1038/nature05934.
21. Shimada H., Nakada A., Hashimoto Y., Shigeno K., Shionoya Y., Nakamura T. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 2010;77(1):2. DOI 10.1002/mrd.21117.
22. Takahashi K., Okita K., Nakagawa M., Yamanaka S. Induction of pluripotent stem cells from fbroblast cultures. Nat. Protoc. 2007;2(12): 3081-3089. DOI 10.1038/nprot.2007.418.
23. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fbroblast cultures by defned factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024.
24. Tsukamoto M., Nishimura T., Yodoe K., Kanegi R., Tsujimoto Y., Alam M.E., Kuramochi M., Kuwamura M., Ohtaka M., Nishimura K., Nakanishi M., Inaba T., Sugiura K., Hatoya S. Generation of footprint-free canine induced pluripotent stem cells using auto-erasable Sendai virus vector. Stem Cells Dev. 2018;27(22):1577-1586. [Epub ahead of print]. DOI 10.1089/scd.2018.0084.
25. Tucker B.A., Anfnson K.R., Mullins R.F., Stone E.M., Young M.J. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl. Med. 2013;2(1):16-24. DOI 10.5966/sctm.2012-0040.
26. Verma R., Holland M.K., Temple¬Smith P., Verma P.J. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology. 2012;77(1):220-228, 228.e221- 222. DOI 10.1016/j.theriogenology.2011.09.022.
27. Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. In vitro reprogramming of fbroblasts into a pluripotent ES-cell-like state. Nature. 2007;448: 318-324. DOI 10.1038/nature05944.
28. Whitworth D.J., Ovchinnikov D.A., Wolvetang E.J. Generation and Characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal Fibroblasts. Stem Cells Dev. 2012;21(12): 2288-2297. DOI 10.1089/scd.2011.0608.
29. Yu J., Vodyanik M.A., Smuga¬Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917- 1920. DOI 10.1126/science.1151526.