1. Bai Y., Han N., Wu J., Yang Y., Wang J., Zhu M., Bian H. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tiss. Organ Cult. (PCTOC). 2014;119(1):211-219. https://doi.org/10.1007/s11240-014-0527-z.
2. Budhagatapalli N., Schedel S., Gurushidze M., Pencs S., Hiekel S., Rutten T., Kusch S., Morbitzer R., Lahaye T., Panstruga R., Kumlehn J., Hensel G. A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods. 2016;12:18. https://doi.org/10.1186/s13007-016-0118-6.
3. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016;34(2):184-191. https://doi.org/10.1038/nbt.3437.
4. Fang Y.D., Akula C., Altpeter F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J. Plant Physiol. 2002;159:1131-1138. https://doi.org/10.1078/0176-1617-00707.
5. Gerasimova S.V., Khlestkina E.K., Kochetov A.V., Shumny V.K. Genome editing system CRISPR/Cas9 and peculiarities of its application in monocots. Russ. J. Plant Physiol. 2017;64(2):141-155. https://doi.org/10.1134/S1021443717010071.
6. Gibson D.G., Young L., Chuang R.Y., Venter J.C., Hutchison C.A. 3rd, Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343-345. https://doi.org/10.1038/nmeth.1318.
7. Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36(Web Server issue):W70-W74. https://doi.org/10.1093/nar/gkn188.
8. Harwood W.A., Bartlett J.G., Alves S.C., Perry M., Smedley M.A., Leyland N., Snape J.W. Barley transformation using Agrobacteriummediated techniques. Methods Mol. Biol. 2009;478:137-147. https://doi.org/10.1007/978-1-59745-379-0_9.
9. Hisano H., Meints B., Moscou M.J., Cistue L., Echávarri B., Sato K., Hayes P.M. Selection of transformation-effcient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017;36(4):611- 620. https://doi.org/10.1007/s00299-017-2107-2.
10. Holme I.B., Wendt T., Gil-Humanes J., Deleuran L.C., Starker C.G., Voytas D.F., Brinch-Pedersen H. Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Mol. Biol. 2017;95(1-2):111- 121. https://doi.org/10.1007/s11103-017-0640-6.
11. Holubova K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. Modifcation of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 2018;9:1676. https://doi.org/10.3389/FPLS.2018.01676.
12. Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:540. https://doi.org/10.3389/fpls.2017.00540.
13. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019. (In press).
14. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modifed using the CRISPR/Cas system. Russ. J. Genet.: Appl. Res. 2017;7(8). https://doi.org/10.1134/S2079059717050124.
15. Kumar N., Galli M., Ordon J., Stuttmann J., Kogel K.H., Imani J. Further analysis of barley MORC1 using a highly effcient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018;16(11):1892- 1903. https://doi.org/10.1111/pbi.12924.
16. Kumlehn J., Hensel G. Genetic transformation technology in the Triticeae. Breed. Sci. 2009;59:553-560. https://doi.org/10.1270/jsbbs.59.553.
17. Lin C.S., Hsu C.T., Yang L.H., Lee L.Y., Fu J.Y., Cheng Q.W., Wu F.H., Hsiao H.C.W., Zhang Y., Zhang R., Chang W.J., Yu C.T., Wang W., Liao L.J., Genvin S.B., Shih M.C. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018;16(7): 1295-1310. https://doi.org/10.1111/pbi.12870.
18. Lowe K., La Rota M., Hoerster G., Hastings C., Wang N., Chamberlin M., Wu E., Jones T., Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant. 2018;54(3):240-252. https://doi.org/10.1007/s11627-018-9905-2.
19. Lowe K., Wu E., Wang N., Hoerster G., Hastings C., Cho M.J., Scelonge C., Lenderts B., Chamberlin M., Cushatt J., Wang L., Ryan L., Khan T., Chow-Yiu J., Hua W., Yu M., Banh J., Bao Z., Brink K., Igo E., Rudrappa B., Shamseer P.M., Bruce W., Newman L., Shen B., Zheng P., Bidney D., Falco C., Register J., Zhao Z.Y., Xu D., Jones T., Gordon-Kamm W. Morphogenic regulators Baby boom and Wuschel improve Monocot transformation. Plant Cell. 2016;28(9):1998-2015. https://doi.org/10.1105/tpc.16.00124.
20. Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M., Azhaguvel P., Sakuma S., Dhanagond S., Sharma R., Mascher M., Himmelbach A., Gottwald S., Nair S.K., Tagiri A., Yukuhiro F., Nagamura Y., Kanamori H., Komatsuda T. Evolution of the grain dispersal system in barley. Cell. 2015;162(3):527-539. https://doi.org/10.1016/J.CELL.2015.07.002.
21. Shan Q., Wang Y., Li J., Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protoc. 2014;9(10):2395-2410. https://doi.org/10.1038/nprot.2014.157.
22. Taketa S., Amano S., Tsujino Y., Sato T., Saisho D., Kakeda K., Nomura M., Suzuki T., Matsumoto T., Sato K., Kanamori H., Kawasaki S., Takeda K. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA. 2008;105(10):4062-4067. https://doi.org/10.1073/pnas.0711034105.
23. Wang W., Akhunova A., Chao S., Akhunov E. Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. BioRxiv. https://doi.org/10.1101/051342.
24. Wong N., Liu W., Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 2015;16: 218. https://doi.org/10.1186/s13059-015-0784-0.